CNC/CIE-CIE/USA Technical Conference 2015

Organic light emitting diodes for solar-grade lighting

Carmen Nguyen Monday, October 19, 2015

Outline

- Organic Light Emitting Diodes (OLEDs)
 - Device structure and working principles
 - Organic materials
 - Application for solid-state lighting
- White OLED device design
 - Phosphorescent emitters
 - Cascade structure
 - Exciton harvesting
 - Fluorescent-Phosphorescent hybrid
 - TADF
- Conclusions
 - Best performing devices

Organic Light Emitting Diodes

Multi-layered device capable of emitting light in response to an applied electric current

4. Exaitge incompidionation and photon emission

Device Structure

Multi-layered device capable of emitting light in response to an applied electric current

Organic Materials

Traditionally two types of radiative decay pathways

$$EQE = \frac{\textit{\# emitted photons}}{\textit{pair of injected carriers}}$$

Fluorescent: EQE ≤ 25%

Phosphorescent materials: EQE ≤ 100%

Lighting Technologies

White OLEDs for Lighting

Requires: High color quality (CRI > 80)

S. J. Su, et al. Adv. Mater., vol. 20, no. 21, pp. 4189–4194, 2008

White OLEDs for Lighting

Requires: High efficiency at high brightness ($L > 5,000 \text{ cd/m}^2$)

High density of triplet states lead to undesirable annihilation processes

Phosphorescent WOLED

UNIVERSITY OF TORONTO

FACULTY OF APPLIED SCIENCE & ENGINEERING

Single vs. multi-layered emissive zone

Phosphorescent WOLED

Cascade emission zone

ITO/MoO₃ (1 nm)

Glass Substrate

CRI = 81.8 EQE = 23.3% @1000cd/m² PE = 31 lm/W

Green dopant acts as exciton harvester for Y and R emitters

Y.-L. Chang, et. al, *Adv. Funct. Mater.*, vol. 23, no. 6, pp. 705–712, Feb. 2013.

UNIVERSITY OF TORONTO
FACULTY OF APPLIED SCIENCE & ENGINEERING

Intrazone

$$\eta_{ex} = \gamma \eta_{out} \chi \phi_{PL}$$

$$= \gamma \eta_{out} \{ \chi_A \phi_{Pl,A} + \chi_D [\eta_{DA} \phi_{Pl,A} + (1 - \eta_{DA}) \phi_{Pl,D}] \}$$

Intrazone

Enhanced red emission with addition of green harvester dopant

FP White OLEDs

Thermally Activated Delayed Fluorescence (TADF)

Move towards completely fluorescent white OLEDs

TADF materials: EQE ≤ 100%

TADF-based White OLEDs

Out-coupling

Cascade EML with exciton harvesting structure:

Improved from 3 Ilm/W to 61.7 lm/W with simple out-coupling technique

Highest performing WhOLED with out-coupling: 90lm/W @1000cd/m²

S. Reineke, et al., *Nature*, vol. 459, no. 7244, pp. 234–238, 2009.

Conclusions and Outlook

