## Uncertainty of Integrated Quantities using Goniometric Data: What to do with the space between the measurements

### Goniometer measurements

### C. Cameron Miller

National Institute of Standards & Technology, Gaithersburg, MD USA



$$I(\theta,\phi) = ([y(\theta,\phi) - y_d(\theta,\phi)]G(\theta,\phi)H(\theta))/C_I$$

$$C_I = \frac{1}{\phi_R} \int_{\phi=0}^{2\pi} \int_{\theta=0}^{\pi} \left[ y_R(\theta, \phi) - y_{R_d}(\theta, \phi) \right] G(\theta, \phi) H(\theta) \sin \theta d\theta \ d\phi$$

$$y_I = \frac{2\pi}{C_I} \sum_{0}^{\pi} ([\bar{y}(\theta)\bar{G}(\theta) - \bar{y}_{\bar{d}}(\theta)\bar{G}(\theta)] \cdot H(\theta) \cdot \sin\theta \cdot \Delta\theta)$$

$$\bar{y}(\theta)\bar{G}(\theta) = \frac{1}{n} \sum_{\phi=0}^{2\pi} y(\theta, \phi)G(\theta, \phi)$$

## Uncertainty of the solid angle

$$\pm t \left(n - p, 1 - \frac{\alpha}{2}\right) \sqrt{a^T C a}$$

n-p degrees of freedom

vector of partial derivatives of the model a with respect to the coefficients evaluated at the given value of the independent variable

covariance matrix

# Weighted solid angle



- Mathematical model
- $y(\theta, \phi) = k_0 + k_1 \theta + k_2 \phi + k_3 \theta^2 + k_4 \theta \phi + k_5 \phi^2$ 
  - · Perform least squares fit to data · Weighted by relative uncertainty
  - Results for 0.10 %

| $k_0 = 88,457$   | ± 375  |
|------------------|--------|
| $k_1 = -1436.1$  | ± 405  |
| $k_2 = -668,854$ | ± 4031 |
| $k_3 = 3012.6$   | ± 156  |

 $k_{A} = -25095$ ± 1131

 $k_5 = 1,741,007 \pm 13959$ 

Previous fit chi-square - 161.4, null hypothesis rejected soundly

Null hypothesis - the model represents the distribution described by the measured data points

Chi-square test as a 'goodness of fit' test

parameters)

Based on a confidence level ( $\alpha$  < 0.05)

Degree of freedom (v = 3, 9 points - 6

→ Critical value 7.815

| Relative uncertainty = 0.46 % |        |  |  |  |  |  |
|-------------------------------|--------|--|--|--|--|--|
| $k_0 = 88,457$                | ± 1727 |  |  |  |  |  |
| $k_1 = -1436.1$               | ± 1863 |  |  |  |  |  |

 $k_2 = -668,854$ ± 18,543  $k_2 = 3012.6$ 

± 5205  $k_{\rm F} = 1,741,007 \pm 64,215$  Center point 191.3 lm + Four corner points

196.2 lm 10 x 10 weighted points

192.9 lm Weighted average - integral 193.4 lm

Chi-square = 7.63

# Confidence band - 95 % of the time the fit falls within a band $\pm t \left(n-p, 1-\frac{\alpha}{2}\right) \sqrt{a^T C a}$ Prediction band – 95 % of the measured points fall within a band



Student's t distribution with having probability  $1-\alpha/2$ 

No analytical solution for a 2-D fit

# **Solution - Monte Carlo analysis**

| Correlation<br>Matrix | k <sub>o</sub> | $k_1$  | k <sub>2</sub> | k <sub>3</sub> | k <sub>a</sub> | k <sub>s</sub> |
|-----------------------|----------------|--------|----------------|----------------|----------------|----------------|
| k <sub>o</sub>        | 1.000          | -0.537 | -0.570         | 0.222          | 0.606          | 0.301          |
| <b>k</b> 1            | -0.537         | 1.000  | 0.117          | -0.880         | -0.402         | -0.002         |
| $k_2$                 | -0.570         | 0.117  | 1.000          | 0.000          | -0.292         | -0.928         |
| $k_3$                 | 0.222          | -0.880 | 0.000          | 1.000          | 0.004          | 0.000          |
| k <sub>a</sub>        | 0.606          | -0.402 | -0.292         | 0.004          | 1.000          | 0.004          |
| k <sub>s</sub>        | 0.301          | -0.002 | -0.928         | 0.000          | 0.004          | 1.000          |

#### Cholesky decomposition

A well known fact from linear algebra is that any symmetric positive-definite matrix, M, may be written as

$$M = U^T D U$$

where U is an upper triangular matrix and D is a diagonal matrix with positive diagonal elements. Since our variance-covariance matrix, Σ, is symmetric positivedefinite, we can therefore write

$$\Sigma = U^T D U = (U^T \sqrt{D}) (\sqrt{D} U) = (\sqrt{D} U)^T (\sqrt{D} U)$$

The matrix  $C = \sqrt{D}U$  therefore satisfies  $C^TC = \Sigma$ . It is called the Cholesky decomposition of  $\Sigma$ .



| [ 1.435]                                               | [ 1.435] |
|--------------------------------------------------------|----------|
| 0.582                                                  | 1.604    |
| $\begin{vmatrix} -0.931 \\ -0.931 \end{vmatrix} = C^T$ | v 0.313  |
| $ -0.890 ^{-1}$                                        | 0.747    |
| -0.074                                                 | -0.705   |
| L 0.408J                                               | L-1 366J |

|            | 10    | 0000 ru   | ıns           |                                         | Mean   | Sdev   |        | Mean   | Sdev   |
|------------|-------|-----------|---------------|-----------------------------------------|--------|--------|--------|--------|--------|
| 700        | T     |           |               |                                         | 193.52 | 22.17  |        | 193.38 | 22.19  |
| 600        | +     |           |               |                                         | 193.13 | 22.02  |        | 193.41 | 22.19  |
| 500        | 500   |           | <u> </u>      | 193.89                                  | 22.41  |        | 193.39 | 22.19  |        |
| 400        | 400   |           | 192.98        | 22.33                                   |        | 193.38 | 22.18  |        |        |
| 300        | 00    |           | •             | 193.24                                  |        | 22.30  | 193.37 | 22.21  |        |
| 200        | -     |           | *             | <u>.</u>                                | 193.87 | 21.95  |        | 193.39 | 22.20  |
| 100        |       | •         |               |                                         | 193.57 | 22.32  |        | 193.41 | 22.22  |
| 0          |       | ********* |               | *************************************** | 193.39 | 22.36  |        | 193.40 | 22.19  |
|            | 80    | 130       | 180<br>Mean v | 230 280                                 | 193.33 | 22.06  |        | 193.37 | 22.20  |
|            |       |           | Mean v        | alue                                    | 193.54 | 22.10  |        | 193.36 | 22.19  |
|            |       |           |               |                                         | 193.45 | 22.20  |        | 193.39 | 22.20  |
| 5          | 6     |           |               |                                         | 0.30   | 0.16   |        | 0.02   | 0.01   |
| 506<br>091 | 0.301 |           |               |                                         | 0.15 % | 0.73 % |        | 0.01 % | 0.05 % |



1000000 runs 90000 80000 70000 60000 50000 40000 30000 20000

Fake data provided accurate results with very little error (<0.01% error for all)

| % Unce | ertainty (68.3% | 6 Confidence, | 0.1% Relative | Uncertainty) |
|--------|-----------------|---------------|---------------|--------------|
| φ      | 1               | 2             | 5             | 10           |
| 5      | 1.9             | 3.3           | 5.2           | 6.4          |
| 22.5   | 4.4             | 7.8           | 13.8          | 16.3         |

## Conclusions and concerns

Relationship between model and relative uncertainty between

Fake data - functional intensity

Luminous intensity according to

 $f(\theta, \phi) = \cos\left(\frac{\phi}{2} + \frac{\pi}{2}\right)^5 \cos\left(\theta + \frac{\pi}{2}\right)^5$ 

- apply bicubic spline, uncertainty in matching derivatives

Correlation between solid angle determinations

Effect on the industry