Imaging System for Measurements of Beam Patterns

Paul J Prior, Research Scientist; Chad Greene, R&D Manager

Westboro Photonics, Ottawa, Ontario

MOTIVATION

- Industries related to lighting such as indoor/outdoor illumination, automotive, avionics, and medical are regulated by global standards and recommendations.
- Ex: Automotive Industry must comply with UNECE(Europe), CMVSS(Canada) or FMVSS(USA), as well as attempt to follow recommendations from the SAE.
- Standards define permissible ranges and gradients for luminous intensity and colour at different test locations, under a number of measurement geometries and operating conditions.
- ► Traditional method uses goniometer and spot detectors. This method is referred to as the Goniometer Method.
- *Goniometer Method is time-consuming,* which creates a burden in production and QA test environments.

OBJECTIVE

To obtain *more complete* beam pattern measurements with a 2-D imaging system, rather than a spot detector system, such that when compared to corresponding Goniometer Method measurements, the 2D imaging system:

- ► Is accurate to within 10%;
- ▶ Reduces measurement time by at least 90%.

Methods

- ▶ Imager Method uses 2-D imaging colorimeter and diffusely reflecting screen.
- ▶ Imager placed adjacent to test source and focused on image formed at the screen, as shown in Figure 1.
- ► The system is calibrated for tilt angle of the camera using perspective transform algorithm[1].
- ► The screen-imager system is calibrated for luminous intensity using a NIST-traceable calibration source.

Figure 1: The setup for the Imager Method for measurements of beam patterns.

EXPERIMENT

Goniometer Method

- 1. Test light source set up on goniometer at a distance of 100 feet from spot detectors (Figure 2).
- 2. Luminous intensity measurements taken with source tilted at angles of 0° , 5° , 10° in horizontal and vertical directions.

Figure 2: LEFT: light source placed onto the goniometer; RIGHT: spot detectors measure the luminous intensity at each goniometer position.

Imager Method

Imager: WP690 9MP colorimeter with Nikon Nikkor 24mm lens.

- 1. White, diffuse screen set up normal to the optical axis, 100 feet from the test light source.
- 2. Imager set up off axis by 15 feet, tilted such that the entire screen covers the field of view.

Figure 3: TOP-LEFT: imager used for the beam pattern measurement; TOP-CENTRE: light source used for the test; TOP-RIGHT: rear view showing projected image of source onto the screen. BOTTOM: Luminance image of the screen as seen by the imager.

RESULTS

Figure 4: Luminous intensity distribution of the test lamp measured using the Goniometer Method (TOP), and Imager Method (BOTTOM).

Figure 5: Beam pattern measurement comparison results. The vertical axis represents the luminous intensity measured by either the Imager Method(solid blue line) or Goniometer Method (dashed red line).

Conclusions

- ► The Imager Method consistently provided luminous intensity measurements that were within 6% of those obtained from the Goniometer Method.
- ► Imager Method measurement time was 30 seconds; Goniometer Method measurment time was 15 minutes.
- ▶ With adequate accuracy and 20-fold improvement in throughput, many production environments would benefit from this imaging system.
- More work will be done to test the effectiveness of this approach across different light sources, camera tilt-angles, and lens focal lengths.

REFERENCES

[1] Richard Szeliski (2010). Computer Vision: Algorithms and Applications. Washington: Springer.

ACKNOWLEDGEMENTS

Photos and data are courtesy of a confidential collaborator.

