Quantum Dots for White LED Application

Outline

- The SSL promise
- Challenges in high colour quality white LEDs
- Quantum Dot
- Breaking color efficiency trade off

Lighting Industry: Facts

\$70 billion

-35%

by 2030

22%

of all electricity use

SSL vs Legacy Technologies

LED advantages

- Promise of high efficacy in excess of 200 lm/W
 - 80-130 lm/W today
 - best in other technologies is only 150 lm/W
- Pulsed (PWM) LEDs offer further savings
- Directional: every photon counts, 75-80% coefficient of utilization
- Long life $L_{70} = 50,000 \text{ hrs}$
- Accurate colour control, high Colour Rendering Index (CRI)
- Intelligent lighting; adaptive controls
- Combined with solar cells off-grid lighting
 - Promising for developing economies think cell phones

Lighting Market

LED lighting market

Need for high colour quality

- We evolved under sunlight
- Our biorhythm is controlled by sunlight
- Modern urban dweller spends entire day under artificial light
- Sunlight epitome of colour quality
- "Fast food of light"
- Core Sunlighting the organic alternative
- SSL promise

The four elements of high-power LED

Courtesy: Philips Lumileds

Epitaxy and Materials

- AlGaInP
 - developed since 90s
 - Yellow, Orange, Red
 - External quantum efficiency 55% around 650 nm
- InGaN
 - developed since 90s
 - Blue, Green
 - External Quantum Efficiency 56% in blue

Current white LEDs are InGaN blue with YAG based phosphors

Alternate approach involves RGB LEDs

The Green Gap

M. R. Krames et al. J. Display Technology, 3 (2007), p160

Blue LED and Phosphor

High colour temperatures; CCT ~4000K Poor colour rendering; CRI ~ 80

Multi phosphor approach

- $SrGa_2S_4:Eu^{2+} + SrS:Eu^{2+}$
- CCT = 3700 K
- CRI = 89

Dissimilar materials

Different thermal properties

- -> shrinkage and cracking
- -> blue light leakage

Quantum Dot Phosphors

Semiconductor nanoparticles with core-shell structure

Luminescence Spectra of QDots

Semiconductor Quantum dots

Efficacy with Color Quality

Quantum Dot - Advantages

- Engineered Properties
- Light emission across entire visible spectrum
- Narrow emission precisely tunable
- High efficiency
- Solution process
- Easy deposition on films

- High CRI
- Warm white
- Higher lamp efficiency
- Simple manufacturing
- Low cost

University of Toronto – Lumentra Nanophosphors

Stability of nanoparticles – biggest concern

- We start with negatively charged polymers dispersed in water
- Collapsing polymer traps precurosrs.
- Polymer is crosslinked with UV light
- Platform method almost anything in periodic table
- Possible to dope precise control of properties
- Multi-emission quantum dots direct white light generation

University of Toronto – Lumentra Nanophosphors

- Tunable, excellent color control
- Good particle size control > controlling scattering
- 'One-pot synthesis'
- No dissimilar thermal properties > no shrinking, cracking, leakage
- No spatial inhomogeneity
- Promise of long term stability

Acknowledgement

Lumentra

- Ontario Power Authority
- Ontario Centres of Excellence
- Vive Nano

Institute for Optical Sciences

- NSERC
- Ontario Research Fund
- Prof. Cynthia Goh and her team
- Juan Irizar, Graham Murdoch

Keep abreast

Solid State Lighting Network

Light Traffic

Free monthly e-newsletter