NRC-CNRC

Institute for National Measurement Standards

Whiteness Assessment of Papers – Impact of LED Illumination

Joanne Zwinkels and Mario Noel

CNC/CIE Workshop for the Canadian lighting industry Vancouver, B.C. 14 October 2010

Presentation Outline

- Whiteness Assessment
 - What, Why, How?
 - CIE Method: Limitations
- Whiter than White
 - Physics of FWAs
 - NRC Measurement of Fluorescent White
- Impact of LED sources on Whiteness
 - SPDs of White LEDs
 - NRC Simulation Results for White LEDs
- Conclusions

Optical Properties of Paper

- Brightness
- Opacity
- Colour
- Gloss
- Whiteness

Product Specifications:

Whiteness 159 CIE (ISO 11475)

Brightness 98% (ISO 2470)

Opacity 95% (ISO 2471)

Benefits of Increased Paper Whiteness

Aesthetic:

- enhanced visual appearance
- Practical:
 - Improved print quality
 - Sharper contrast in B/W printed images
 - Improved colour brilliance in colour prints

Economic:

Cost of increasing whiteness
 by 1 unit in fine white paper is
 ~\$3-4 USD/ ton, or ~ \$100M
 USD in Canada

"It commands premium value in the marketplace to have a paper product that is seen as being very white".

Robert Wood, Executive Director of the Pulp and Paper Technical Association of Canada

2002 Metrotrade

What is Whiteness?

White vs Whiteness

• Ideal White: maximum luminous reflectance, no chroma, no

saturation (PRD)

c.f. White in Nature

Absorption in UV and blue = yellowish shade

- People prefer "bluish-white" to grayish, yellowish, etc. whites
- Whiteness: high level of luminous reflectance, blue hue, finite saturation (perceptual attribute)

CIE Whiteness Assessment

CIE Whiteness (10°):

CIE 15:2004*

$$W_{10} = Y_{10} + 800(x_{n,10} - x_{10}) + 1700(y_{n,10} - y_{10})$$

LIMITATIONS:

- -Only for **D65**
- -Only for Near- whites (CIE limit on W)

$$40 < W_{10} < 5Y - 280$$

- *"samples ...do no differ much in colour and fluorescence,...
- Only gives relative values: *"..measured on the same instrument at nearly the same time."

ISO Standards for Whiteness

- ISO 11475: Paper and board Determination of whiteness, D65/10° (Outdoor illumination conditions)
- ISO 11476: Paper and board Determination of whiteness, C/2° (Indoor illumination conditions)

Whiteness is based on measurements of:

- radiance (reflectance) factor data over the full visible spectrum
- dependent on the illumination conditions

Key assumptions of Whiteness assessment

- Colorimetric measurements of Whiteness
 - Are relevant to end use value only if users view paper under illumination similar to that of reference illuminant
- Viewing under Daylight (outdoor or indoor) conditions
- CIE whiteness equation is valid for CIE illuminant C (CCT is 6770 K c.f. ~6500 K for D65)

Assume:

Sources with **Similar CCT** give **Similar Whiteness assessment**

Increasing Paper Whiteness, W

Increase substrate whiteness:

- Highly bleached pulp
- High bright fillers

Compensate yellowishness:

 Shading colorants (violet, blue)

Adding blue light:

Fluorescent whitening agents (FWAs)

W = 100 for perfect reflecting diffuser (**PRD**)

Before FWAs: W ~ 85

In Yr 2000: $W \sim 135$

In Yr 2002: $W \sim 149$

NOW: W~>160!!

(at CIE Limit)

FWA – Excitation/Emission

Excitation and Emission Spectra

NRC-CNRC
Institute
for National
Measurement
Standards

Whiter than White

Fluorescent light (FWA) + Reflected light (substrate) **Total** (whiter than white)

Measure Total Radiance (Reflectance) Factor $\beta_T = \beta_R + \beta_F$

Institute
for National
Measurement
Standards

NRC Reference Spectrofluorimeter

- Based on two-monochromator method
- Measurement geometry: 45° annular illumination/ 0° viewing (45°a::0°)

NRC Whiteness Assessment

Total Spectral Radiance Factors

$$\beta_{T}$$
 (45°a/0°); $\beta_{T} = \beta_{R} + \beta_{F}$

- · 200 nm to 1040 nm
- Selected illuminants (D65, C,A, D50,custom)
 - in accordance with ASTM E991

$$W_T = W_R + W_F$$

Total Whiteness = Whiteness (**reflected**) + Whiteness (**fluorescent**)

Fluorescent Paper Results

Considerations:

- Shape of fluorescent peak
 depends on Excitation λ
- Fluorescence intensity
 (quantum yield) depends on
 Excitation λ

Conclusion:

 SPD of source is important to both shape and intensity of fluorescent light NOT just relative UV/visible output

Need to measure bispectral fluorescence

NRC-CNRC
Institute
for National
Measurement
Standards

Fluorescent Paper Bispectral Results

Effect of Illuminant SPD

Institute
for National
Measurement
Standards

Assessing Impact of Source on Whiteness

Whiteness is ADDITIVE

$$W = Y + 800(x_n - x) + 1700(y_n, -y)$$

$$Y \qquad \text{Lightness (mainly due to non-fluor. substrate)}$$

$$800(x_n - x) + 1700(y_n, -y) \qquad \text{Colour Shift (mainly due to FWA)}$$

Impact of Source: W - Y

Assessing Impact of Source on Whiteness

Whiteness is ADDITIVE

Impact of Source: $W_T - W_R$

White LED SPDs

Incandescent replacement

Pot light replacement

Institute for National Measurement Standards

Differences in SPDs

Assume: constant interpolation of SPD from 380 to 300 nm

Institute
for National
Measurement
Standards

Total Radiance Factor Results

White LED SPDs

Fluorescent replacement

Wavelength (nm)

Wavelength (nm)

NRC-CNRC
Institute
for National
Measurement
Standards

Total Radiance Factor Results

Whiteness Results

Impact of Source: $W_T - W_R$

ISO 11475 CIE Whiteness (D65/10)

NRC-CNRC
Institute
for National
Measurement
Standards

Whiteness Results

Impact of Source: W - Y

ISO 11475 CIE Whiteness (D65/10)

Conclusions

- Limitations to current methods of whiteness assessment:
 - Need Source SPD data to 300 nm
 - Validity needs to be tested for white LEDs
 - differ considerably from CIE illuminant conditions
- CCT not sufficient metric for characterizing whiteness of paper
- Pot-light replacement white LED best performance:
 - predicting CIE whiteness (w.r.t CIE A, CIE C)
- Full advantages of FWAs cannot be realized:
 - Papermakers reconsider current technologies// strategies for increasing paper whiteness OR
 - Consumers satisfied with lower levels of whiteness

Acknowledgements

Dr. Venkat Venkatarananan
University of Toronto
Provision of White LED
SPD
and CRI data

Discussion / Questions

Thank you for your attention

