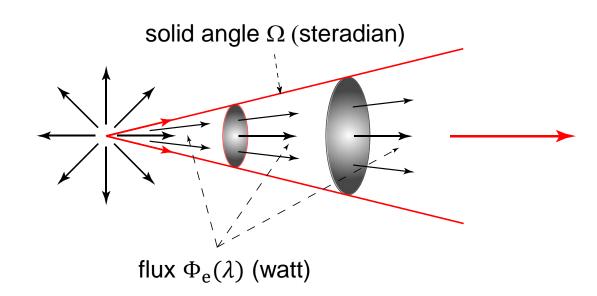
CCPR K3 Key Comparison of Luminous Intensity

Arnold Gaertner NRC Metrology

CORM 2019 Annual Technical Conference 2019-October-28

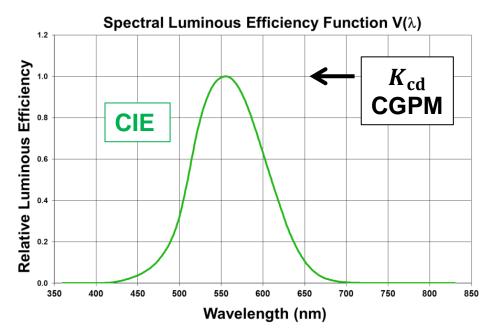

NRC.CANADA.CA

Intensity

Radiant Intensity

$$I_{\rm e}(\lambda) = \frac{\Phi_{\rm e}(\lambda)}{\Omega} = \frac{\text{radiant flux}}{\text{solid angle}}$$

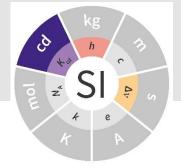
unit = watt per steradian

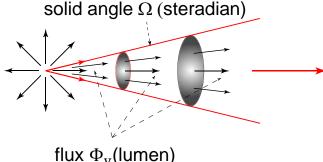

Intensity

Luminous Intensity

$$I_{\rm v}=rac{\Phi_{
m v}}{\Omega}=rac{{
m luminous~flux}}{{
m solid~angle}}$$
 unit = candela = lumen per steradian

$$\Phi_{\rm v} = K_{\rm cd} \int_{360 \, nm}^{830 \, nm} V(\lambda) \cdot \Phi_{\rm e}(\lambda) \cdot d\lambda$$
unit = lumen

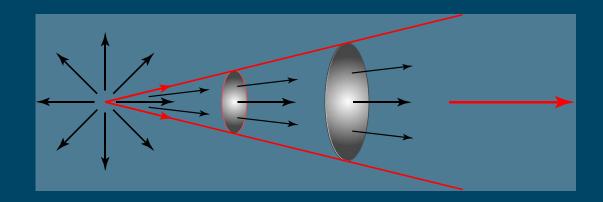

$$K_{\rm cd} = 683 \; \frac{\text{lumen}}{\text{watt}}$$



Intensity

Luminous Intensity, SI unit candela

$$I_{\rm v} = \frac{\Phi_{\rm v}}{\Omega}$$
 unit = lumen per steradian = candela



CGPM definition:

The candela, symbol cd, is the SI unit of luminous intensity in a given direction. It is defined by taking the fixed numerical value of the luminous efficacy of monochromatic radiation of frequency 540 x 10^{12} Hz, $K_{\rm cd}$, to be 683 when expressed in the unit lm W⁻¹, which is equal to cd sr W⁻¹, or cd sr kg⁻¹ m⁻² s³, where the kilogram, metre and second are defined in terms of h, c and $\Delta \nu_{\rm Cs}$.

https://www.bipm.org/en/measurement-units/base-units.html

CCPR KEY COMPARISON CCPR-K3.2014

Comparison Organisation

Selection of participants, artifacts and protocol

Comparison Procedures

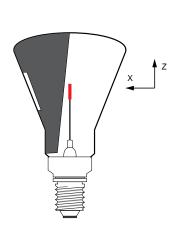
- Comparison measurements and measurement verification
- Data analysis and comparison of participant SI candela realisations
- Write the report

Comparison Organisation

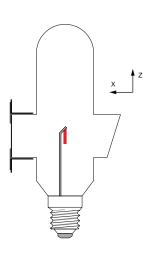
- · Selection of NRC as pilot
- Selection of participants (12 max)
- Task Group
 - Selection of artifact
 - Lamp vs photometer: standards-quality incandescent lamps
 - Type of lamp: Incandescent (Osram Wi41/G and NPL/Polaron heavy current)
 - Type of comparison (star type: participant pilot participant)
 - Standard lamps are fragile and expensive
 - Draft the technical protocol (artifact transportation, measurement reporting, uncertainties, etc.)
- Register the comparison: CCPR-K3.2014

RMO Group	RMO Group Members	Maximum Number of Participants
Group 1	EURAMET+COOMET	6
Group 2	APMP+AFRIMETS	4
Group 3	SIM	2

Comparison Organisation

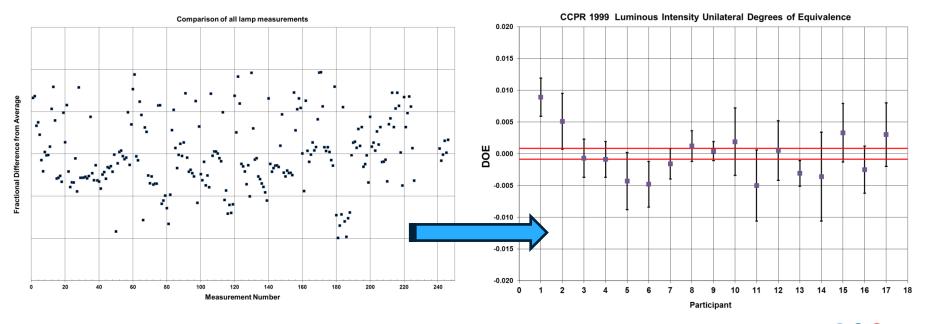

Selection of participants

NMI	Country
NMISA	South Africa
NIM	China
NMIA	Australia
NMIJ	Japan
IO-CSIC	Spain
LNE-CNAM	France


NMI	Country
METAS	Switzerland
NPL	UK
РТВ	Germany
VNIIOFI	Russia
NIST	USA
NRC	Canada

Comparison Artifact

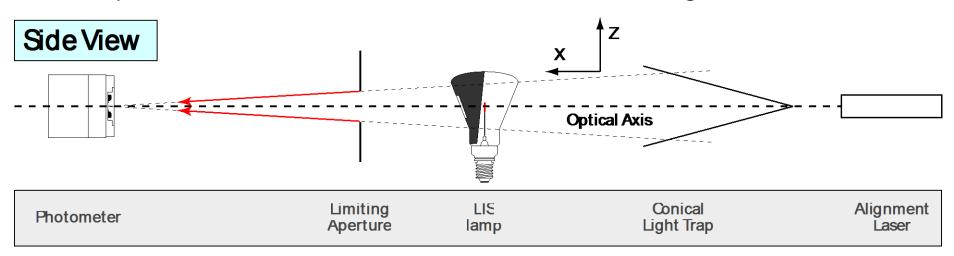
Type of lamp: Incandescent (Osram Wi41/G and NPL/Polaron heavy current)



Comparison Procedures • Measurements

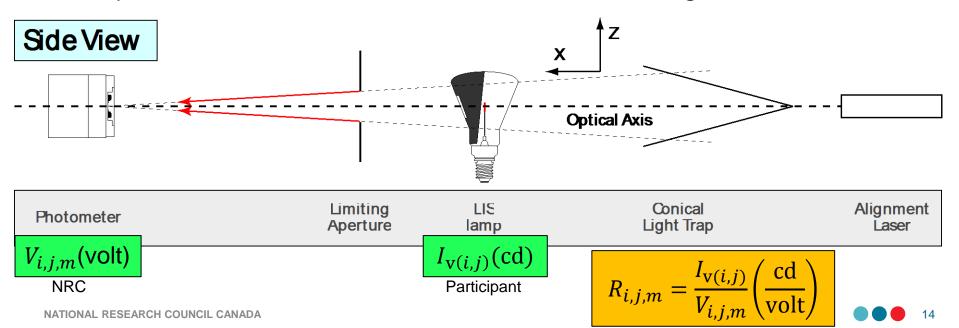
- Comparison measurements
 - Each participant supplied their own calibrated (~6) lamps (ship or hand-carry)
 - NRC received and measured ~70 comparison lamps
 - Each participant re-measured their lamps
- Measurement verification and artifact certification
 - Each participant compares before and after shipment measurements
 - NRC provides relative data for all the artifacts of each participant
 - Removal of unstable artifacts => final comparison artifacts

Comparison Procedures • Data Analysis

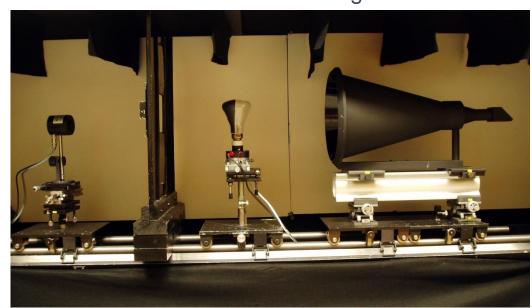


Comparison Procedures • Analysis

- Data analysis
 - Determine final NRC measurement value for each artifact
 - Determine final NRC measurement value for each participant
- Comparison of participant SI candela realisations
 - KCRV (Key Comparison Reference Value)
 - Weighted mean with cut-off
 - Identification of 'outliers': deviation from KCRV greater than 6 times their uncertainty
 - Consistency check: Chi-square($\alpha = 0.05$) test, $\chi^2_{0.05}(\nu = 11) = 19.7$
- All this requires an uncertainty analysis (NRC and Participant measurements)


Comparison Procedures • Measurements at pilot (NRC)

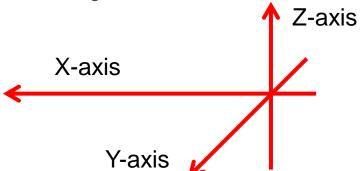
Comparison of all artifacts under identical measurement configuration

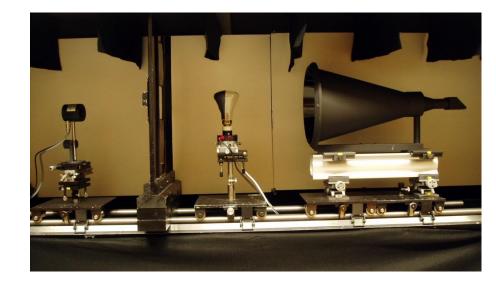


Comparison Procedures • Measurements at pilot (NRC)

Comparison of all artifacts under identical measurement configuration

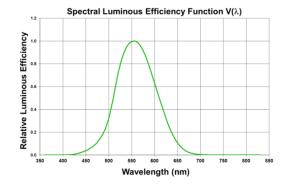
- Comparison of all artifacts under identical measurement configuration
- $d \sim 3.2 \, m$
- 3 photometers
- ≥ 2 measurements/lamp
- ~ 250 measurements
- ~ 2 months

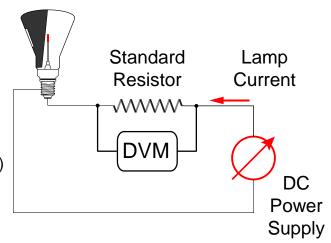

Comparison Procedures • Measurements at pilot (NRC)


- How accurate is the comparison?
- Sources of Uncertainty $u(V_{i,j,m})$ (~15!)
 - NRC Optical Coordinate System (2)
 - NRC Photometer (5)
 - Participant Lamps
 - Electrical (4)
 - Optical (3)
 - Photometric (1)

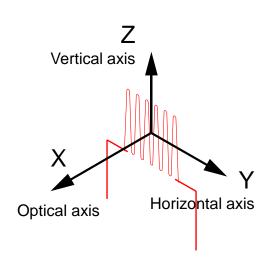
Consider:

- In 3D space there are 6 variables: 3 spatial and 3 angular
- Lamp output: % change ≈ 7 times % change in lamp current
 - Am I operating the lamp electricals to the same standards as the participant?
- How/with what do I ensure stability over 2 months of measurements?


- Sources of Uncertainty $u(V_{i,j,m})$
 - NRC Optical Coordinate System (2)
 - Starting line is X-axis (laser beam)
 - Alignment of Y-axis to X-axis (laser)
 - Alignment of Z-axis to XY axes


- Sources of Uncertainty $u(V_{i,j,m})$
 - NRC Optical Coordinate System (2)
 - NRC Photometer (5)
 - Spectral Mismatch Error

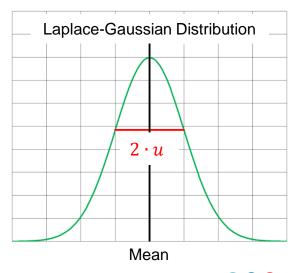
•
$$F^* = \frac{\int_{360 \text{ }nm}^{830 \text{ }nm} P_e^T(\lambda) \cdot V(\lambda) \cdot d\lambda}{\int_{all \text{ }wavelengths} P_e^T(\lambda) \cdot R(\lambda) \cdot d\lambda} \frac{\int_{all \text{ }wavelengths} P_e^S(\lambda) \cdot R(\lambda) \cdot d\lambda}{\int_{360 \text{ }nm}^{830 \text{ }nm} P_e^S(\lambda) \cdot V(\lambda) \cdot d\lambda}$$



- Responsivity Drift (what is constant over the 2 months of measurements?)
- Signal Noise (fluctuations)
- Alignment to optical axis (Y-Z centre)
- Alignment to optical axis (Y-Z angular)

- Sources of Uncertainty $u(V_{i,j,m})$
 - NRC Optical Coordinate System (2)
 - NRC Photometer (5)
 - Participant Lamps
 - Electrical (4)
 - Standard Resistor calibration (lamp current measurement)
 - DVM voltage calibration (lamp current measurement)
 - Lamp current setting
 - Lamp current fluctuations
 - % change in lamp output is approximately 7 times % change in lamp current
 - Optical (3)
 - Photometric (1)

- Sources of Uncertainty $u(V_{i,j,m})$
 - NRC Optical Coordinate System (2)
 - NRC Photometer (5)
 - Participant Lamps
 - Electrical (4)
 - Optical (3)
 - Vertical filament plane (parallel to Z-axis, rotation about Y-axis)
 - Vertical filament plane (parallel to Y-axis, rotation about Z-axis)
 - Lamp to photometer distance (photometer signal $\propto 1/d^2$)
 - Photometric (1)
 - Lamp output fluctuations


- Sources of Uncertainty Summary $u(V_{i,j,m})$
 - 4 predominant sources of uncertainty:

Source of Uncertainty	Туре	Relative Standard Uncertainty
NRC Photometer		
Spectral Mismatch Error	В	0.01%
Responsivity Drift	Α	0.05%
Participant Lamps (optical)		
Vertical Filament Plane	Α	0.01%
Lamp-to-Photometer distance	Α	0.03%

Comparison Procedures • Data Analysis

- Sources of Uncertainty
 - 3 sources:
 - Participant LI values
 - NRC comparison measurements
 - Artifact repeatability at NRC
 - Kinds of uncertainties:
 - Type A
 - Type B
 - Uncorrelated
 - Correlated

$$R_{i,j,m} = \frac{I_{v(i,j)}}{V_{i,j,m}} \left(\frac{\text{cd}}{\text{volt}}\right)$$

Comparison Procedures • Data Analysis

- Sources of Uncertainty combination of uncertainties*
 - Kinds of Uncertainties:
 - Type A
 - Type B
 - Uncorrelated (*uc*)
 - Correlated (c)

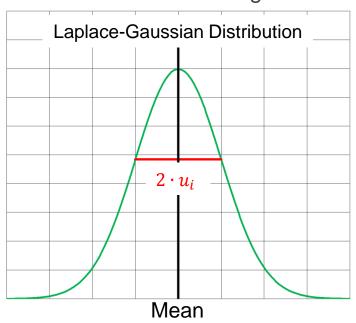
$$u_{uc}^{2}(Q) = \sum_{i=1}^{n} \left(\frac{\partial f}{\partial x_{i}}\right)^{2} \cdot u_{uc}^{2}(x_{i})$$

 $Q = f(x_i)$

$$u_c^2(Q) = \left[\sum_{i=1}^n \left(\frac{\partial f}{\partial x_i}\right) \cdot u_c(x_i)\right]^2$$

$$u_{total}^{2}(Q) = u_{uc}^{2}(Q) + u_{c}^{2}(Q)$$

*GUM, Guides to the expression of uncertainty in measurement, JCGM 100:2008, etc. www.bipm.org



Comparison Procedures • Data Analysis

- Sources of Uncertainty combination of uncertainties weighted mean
 - Weights $\mathbf{W}_i = \frac{1}{u_i^2}$
 - Normalised $w_i = \frac{W_i}{\sum W_i}$

$$Q = \sum_{i=1}^{n} w_i \cdot x_i$$

$$\frac{\partial Q}{\partial x_i} = w_i$$

Comparison Procedures • Data Analysis

- Sources of Uncertainty combination of uncertainties weighted mean
 - Type A
 - Type B
 - Uncorrelated
 - Correlated

Measured Quantity	Uncertainty		
	Туре А	Type B	Combined
V_1	$u_A(V_1)$	$u_B(V_1)$	$\sqrt{u_A^2(V_1) + u_B^2(V_1)}$
V_2	$u_A(V_2)$	$u_B(V_2)$	$\sqrt{u_A^2(V_2) + u_B^2(V_2)}$
V_n	$u_A(V_n)$	$u_B(V_n)$	$\sqrt{u_A^2(V_n) + u_B^2(V_n)}$
$f(V_i) = \sum_{i=1}^n w_i V_i$	$u_A^2(f) = \sum_{1}^{n} w_i^2 u_A^2(V_i)$	$u_B^2(f) = \left[\sum_{1}^{n} w_i u_B(V_i)\right]^2$	$\sqrt{u_A^2(f) + u_B^2(f)}$
Weighted mean	Uncorrelated	Correlated	Combined

Comparison Procedures • Analysis

- Data analysis
 - Determine final NRC measurement value for each artifact: $R_{i,j} = \langle R_{i,j,m} \rangle_m$, ~12x6=72 values
 - $u(R_{i,j})$ is a combination of NRC measurements (u_A and u_B), Participant (u_A and u_B) and lamp u_A
 - Determine final NRC measurement value for each participant: $R_i = \langle R_{i,j} \rangle_i$, = 12 values
 - $u(R_i)$ is a combination of the $(u_A \text{ and } u_B)$ components of $u(R_{i,j})$
- Comparison of participant SI candela realisations
 - KCRV (Key Comparison Reference Value)
 - Weighted mean with cut-off
 - Identification of 'outliers': deviation from KCRV greater than 6 times their uncertainty
 - Consistency check: Chi-square($\alpha = 0.05$) test, $\chi^2_{0.05}(\nu = 11) = 19.7$

Comparison Procedures • Analysis

- Comparison of participant SI candela realisations
 - KCRV (Key Comparison Reference Value)
 - Weighted mean with cut-off

median

$$u_{cut-off} = average(u_7 to u_{12})$$

Participant Luminous Intensity uncertainty Relative standard values (ordered highest to lowest)

unadjusted	adjusted u _{adj} (NMI)
$oldsymbol{u}_1$	\boldsymbol{u}_1
\boldsymbol{u}_2	$oldsymbol{u}_2$
u_6	\boldsymbol{u}_6
u_7	\boldsymbol{u}_7
u_{j}	$oldsymbol{u}_j$
$oldsymbol{u}_k$	$oldsymbol{u}_{cutoff}$
	$oldsymbol{u}_{cutoff}$
\boldsymbol{u}_{11}	$oldsymbol{u}_{cutoff}$
$oldsymbol{u}_{12}$	$oldsymbol{u}_{cutoff}$

Comparison Procedures • Analysis

- Comparison of participant SI candela realisations
 - KCRV (Key Comparison Reference Value)
 - Weighted mean with cut-off

$$u_{adj}^{2}(R_{i}) = u_{adj}^{2}(NMI) + u_{transfer}^{2}(R_{i})$$
 weights $\mathbf{W}_{i,adj} = \frac{1}{u_{adj}^{2}(R_{i})}$ normalised $w_{i,adj} = \frac{\mathbf{W}_{i,adj}}{\sum \mathbf{W}_{i,adj}}$

Participant Luminous Intensity uncertainty Relative standard values (ordered highest to lowest)

tions	unadjusted	adjusted $u_{adj}(\mathit{NMI})$
	$oldsymbol{u}_1$	\boldsymbol{u}_1
	\boldsymbol{u}_2	\boldsymbol{u}_2
median	$oldsymbol{u}_6$	\boldsymbol{u}_6
median	\boldsymbol{u}_7	\boldsymbol{u}_7
11	$oldsymbol{u}_j$	$oldsymbol{u}_j$
$u_{cut-off}$	$oldsymbol{u}_k$	$oldsymbol{u}_{cutoff}$
		$oldsymbol{u}_{cutoff}$
	u_{11}	$oldsymbol{u}_{cutoff}$
	\boldsymbol{u}_{12}	$oldsymbol{u}_{cutoff}$

NATIONAL RESEARCH COUNCIL CANADA

Comparison Procedures • Analysis

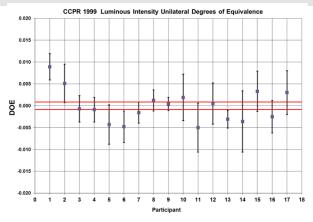
- Comparison of participant SI candela realisations
 - KCRV (Key Comparison Reference Value)
 - Weighted mean with cut-off

$$R_{KCRV} = \sum_{i=1}^{n} w_{i,adj} \cdot R_i \left(\frac{\text{cd}}{\text{volt}} \right)$$

$$u^{2}(R_{KCRV}) = \sum_{i=1}^{n} w_{i,adj}^{2} \cdot u^{2}(R_{i})$$
(uncorrelated)

Participant Luminous Intensity uncertainty Relative standard values (ordered highest to lowest)

unadjusted	adjusted u _{adj} (NMI)
$oldsymbol{u}_1$	$oldsymbol{u}_1$
\boldsymbol{u}_2	\boldsymbol{u}_2
u_6	\boldsymbol{u}_6
\boldsymbol{u}_7	\boldsymbol{u}_7
u_{j}	u_j
$oldsymbol{u}_k$	$oldsymbol{u}_{cutoff}$
	$oldsymbol{u}_{cutoff}$
\boldsymbol{u}_{11}	$oldsymbol{u}_{cutoff}$
$oldsymbol{u}_{12}$	$oldsymbol{u}_{cutoff}$


Comparison Procedures • Analysis

- Comparison of participant SI candela realisations
 - KCRV (Key Comparison Reference Value)
 - Weighted mean with cut-off

$$\chi^2_{observed} = \sum_{i=1}^n \frac{(R_i - R_{KCRV})^2}{u_{adj}^2(R_i)}$$

Comparison Procedures • Analysis

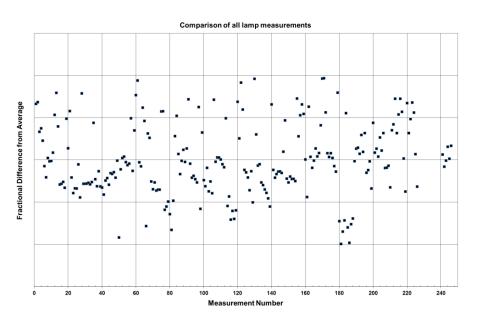
- Comparison of participant SI candela realisations
 - KCRV (Key Comparison Reference Value)
 - Weighted mean with cut-off
 - Identification of 'outliers': deviation from KCRV greater than 6 times their uncertainty
 - Consistency check: Chi-square($\alpha = 0.05$) test, $\chi^2_{0.05}(\nu = 11) = 19.7$

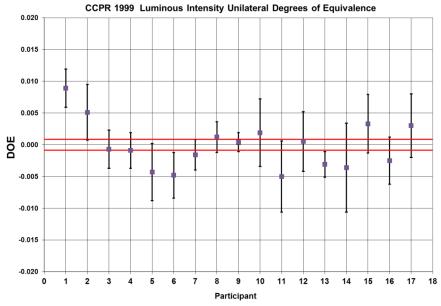
IF
$$\chi^2_{observed} > \chi^2_{0.05}(\nu)$$
 (inconsistent!)

THEN add Mandel-Paule adjustment uncertainty s

$$u_{adj}^2(R_i) = u_{adj}^2(NMI) + u_{transfer}^2(R_i) + s^2$$

And REPEAT calculations with various s until 'consistent'


Comparison Procedures • Analysis


- Comparison of participant SI candela realisations
 - KCRV (Key Comparison Reference Value)
 - · Weighted mean with cut-off
 - Identification of 'outliers': deviation from KCRV greater than 6 times their uncertainty
 - Consistency check: Chi-square($\alpha = 0.05$) test, $\chi^2_{0.05}(\nu = 11) = 19.7$
 - Calculate the Unilateral Degrees of Equivalence (DOE): D_i

$$D_i = \frac{R_i - R_{KCRV}}{R_{KCRV}} \qquad u_i^2 = u^2(R_i) + u^2(R_{KCRV}) - 2(w_i \cdot u^2(R_i))$$

 R_i and R_{KCRV} are correlated

Comparison Procedures • Data Analysis

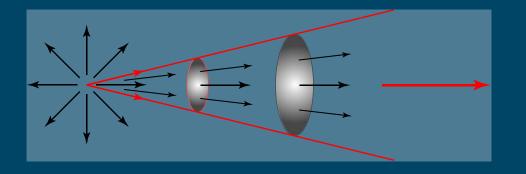
Comparison Procedures • Analysis

- Comparison of participant SI candela realisations
 - KCRV (Key Comparison Reference Value)
 - · Weighted mean with cut-off
 - Identification of 'outliers': deviation from KCRV greater than 6 times their uncertainty
 - Consistency check: Chi-square($\alpha = 0.05$) test, $\chi^2_{0.05}(\nu = 11) = 19.7$
 - Calculate the Unilateral Degrees of Equivalence (DOE)
 - Calculate the Bilateral Degrees of Equivalence

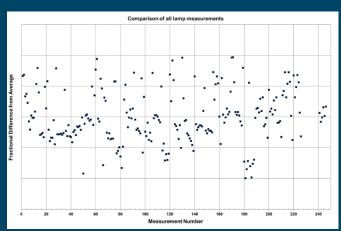
$$D_{i,j} = \frac{R_i - R_j}{R_{KCRV}}$$

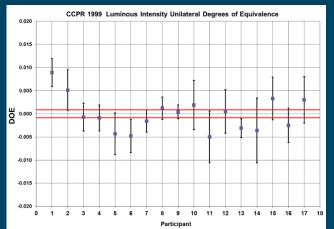
$$u_{i,j}^2 = u^2 (R_i) + u^2 (R_j)$$

$$(R_i \text{ and } R_i \text{ uncorrelated})$$


Comparison Organisation

Selection of participants, artifacts and protocol


Comparison Procedures


- Comparison measurements and measurement verification
- Data analysis and comparison of participant SI candela realisations
- Write the report
 - Draft A and any revisions, confidential to participants
 - Draft B to CCPR WG-KC for approval (and/or any revisions)
 - Approved Draft B to CCPR for approval
 - Final Report

CCPR KEY COMPARISON CCPR-K3.2014

ACKNOWLEDGEMENTS

W.S. Neil R.J. Douglas

Éric Côté J.C. Zwinkels

12 NMI participants

THANK YOU

Arnold Gaertner Research Officer arnold.gaertner@nrc-cnrc.gc.ca

