NRC-CNRC

Progress in Few-Photon Metrology at NRC

Jeongwan Jin and Angela Gamouras

CORM2019

NRC.CANADA.CA

Outline

- 1. Few-photon metrology for single-photon detectors and sources
- 2. Single-photon detection efficiency calibration system
- 3. Single-photon detectors
- 4. Single-photon sources

Few-photon metrology laboratory

Few-photon metrology for quantum photonics

ETSI GS QKD 011 V1.1.1 (2016-05)

Quantum Key Distribution (QKD); Component characterization: characterizing optical components for QKD systems

C. J. Chunnilall et al., Optical Engineering 53, 081910 (2014)

SI-traceable detection-efficiency calibration

NRC Absolute Cryogenic Radiometer

Transfer Standard Radiometer

Single-Photon Detector

Detection efficiency characterization¹

$$\eta_{eff} = \frac{E_{det}}{E_{in}} = \frac{\frac{hc}{\lambda} \times N_{SPAD}}{E_0 \times \prod_{i=1}^2 T_i} = \frac{hc}{\lambda} \times As \times \frac{Q_0 \times Q_{SPAD}}{Q_1 \times Q_2}$$

h: Planck constant

c: speed of light

 λ : wavelength

N_{SPAD}: number of photons detected by SPAD

 $T_i(i = 1,2)$: filter transmission

s: TSD spectral responsivity

A: amplification

 $Q_i(i = 0,1,2)$: ratio $V_i/V_{i,mon}$

Q_{SPAD}: ratio N_{SPAD}/V_{SPAD}mon/

[1] M. López et al., J. Mod. Opt. 62, S21 (2015)

Measurement apparatus

Active area of SPAD

Measurement results

Single-photon detector at NRC in collaboration with NIST

Type: superconducting nanowire

Material: Tungsten silicide

Operating temperature: 0.7 K

Wavelengths: 800, 1064, and 1550 nm

Efficiencies: > 90 %

Timing resolution: 80 ps

Dark counts: < 1Hz

Recovery time: 30 ns

Single-photon source towards quantum candela

PTB: NV-centered diamond¹

NPL: artificial atom²

INRIM: PP-lithium niobate crystal³

- [1] B. Rodiek et al., Optica. 4, 71 (2017)
- [2] Z. H. Peng et al., Nature Communications. 7, 12588 (2016)
- [3] E. Rebufello et al., Metrologia. 56, 025004 (2019)

Single-photon source at NRC

in collaboration with NRC Advanced Electronics and Photonics & Security and DisruptiveTechnology

Type: semiconductor quantum dot nanowire

Material: InAs-InP

Operating temperature: <10 K

Wavelength: 930 nm

Lifetime¹: 1.6 ns

Bandwidth¹: 4 µeV

Efficiency¹: 43 % (di-directional -> total 86 %)

Single-photon purity¹: 0.002 (0 for a true single photon)

Tapered waveguide

Towards single-photon metrology

