NRC-CNRC

NRC.CANADA.CA

Real-time detection of tar brown carbon by light-scattering and laser-induced incandescence

Joel C. Corbin ^{1,2} and Martin Gysel-Beer ²

¹ Black Carbon Metrology Team, Metrology Research Centre, National Research Council, 1200 Montreal Road, Ottawa, Ontario, Canada

² Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, **Switzerland**

absorption by marine-engine exhaust

Infrared-absorbing carbonaceous tar can dominate light

J. C. Corbin (1) 2, H. Czech (3,10, D. Massabò (4,5, F. Buatier de Mongeot (5) 4, G. Jakobi (6,7, F. Liu², P. Lobo (2) 2, C. Mennucci (4, A. A. Mensah) 8, J. Orasche (3,7, S. M. Pieber (1,11), A. S. H. Prévôt (1, B. Stengel (6,9), L.-L. Tay², M. Zanatta (1,12), R. Zimmermann (3,6,8), I. El Haddad (1 and M. Gysel (5))

ARTICLE

Outline

1. Background

black carbon and not-black-carbon

2. Technique

• Single-Particle "Soot" Photometry (SP2)

3. Results

Using the SP2 to characterize non-soot black carbon

Black carbon (BC): an important atmospheric absorber

Bond, Doherty, Fahey, Forster et al., J. Geophys. Res. 2013; Ghan ACP 2013

Black carbon (BC):

Flame-synthesized nano-aggregates of nearly-graphitic carbon spherules.

Curved graphenelike layers

200nm image from Trivanovic, Corbin et al., 2019 5nm image from Vander Wal et al., 2014

Smoke does not just contain BC!

1. Heavy fuels (~1000 Da) form carbonized particles known as tarballs [1,2]

2. Heavy fuels are:

- Biomass (wood, ...)
 - Home heating, wildfires
- Residual fuels
 - Marine engines

IMAGE: Jiang, Roberts, et al. Energy & Fuels 2019

Defining and measuring BC Light-Absorbing Carbon

Property	Soot BC	Tar brC	
Solubility ^a	Negligible solubility in common solvents		
Light absorption	300–1000 nm [detected as eBC at NIR λ]		
Chemical state	Contorted graphene layers		
Carbon bonding	sp ² dominated		
Vapourization at ^b	$\sim 4000\mathrm{K}[\mathrm{EC},\mathrm{rBC}]$		
Produced by	Flame synthesis		
Morphology	Ship of the same o		
Diameter ^c $[\mu m]$	0.02-0.2	0.03-0.3	

Corbin et al., Nature npj Clim Atmos Sci 2019

Defining and measuring Light-Absorbing Carbon

LAC type

Property	Soot BC	Char BC	Tar brC	Soluble brC
Solubility ^a	Negligible solubility in common solvents			Soluble
Light absorption	300–1000 nm [detected as eBC at NIR λ]			300–600 nm
Chemical state	Contorted graphene layers		Amorphous	Distinct molecules
Carbon bonding	sp ² dominated		sp^2 and sp^3	sp^2 and sp^3
Vapourization at ^b	$\sim 4000\mathrm{K}[\mathrm{EC},\mathrm{rBC}]$		$\sim 1000\mathrm{K}[\mathrm{EC}]$	< 600 K
Produced by	Flame synthesis	Fuel-droplet pyrolysis	Partial pyrolysis	Oxidation, pyrolysis,
Morphology	and the same			O ₂ N OH
Diameter ^{c} [μ m]	0.02-0.2	1–5	0.03-0.3	0.05-0.2

New categorization of light-absorbing carbon (LAC) in the atmosphere.

Corbin et al., Nature npj Clim Atmos Sci 2019

Defining and measuring Light-Absorbing Carbon

Tar >> soot-BC at low engine loads

Low loads (<40%) used for safety in presence of ice [Lack and Corbett, ACP 2012]

Our data explain tar-like particles identified in previous studies

- AAE of 2.2 measured by Doherty et al., ACP 2010 for insoluble LAC in snow.
- Alexander et al. (Science 2008) could not identify source of tar-like particles over Yellow Sea.

Outline

1. Background

black carbon and not-black-carbon

2. Technique

Single-Particle "Soot" Photometry (SP2)

3. Results

Using the SP2 to characterize non-soot black carbon

Single Particle Soot Photometer (SP2)

1064 nm

→ designed to measure rBC mass Sample Aerosol Incandescence: Incandescence: ~630-800 nm ~350-800 nm High reflectivity mirror Pump Diode Nd:YAG crystal lasing at 1064nm Optical filters 2-element position-Scattered light sensitive detector detector at λ >

Soot within the SP2 laser

13

Soot within the SP2 laser

14

Interpreting SP2 spectra

Interpreting SP2 spectra

Interpreting SP2 spectra

- O. Particle beginning to cross Gaussian laser beam
- 1. Coating evaporates
- 2. BC incandesces
- 3. BC vapourizes

Outline

1. Background

black carbon and not-black-carbon

2. Technique

Single-Particle "Soot" Photometry (SP2)

3. Results

Using the SP2 to characterize non-soot black carbon

Experiment Overview

SP2 signals observed for "normal" particles

Upper panels

Incandescence signal I(t)

Middle panels

- Scattering signal S(t)
- ···· Beam profile
- Split detector position

Anomalous SP2 signals: identified as tar

Upper panels

Incandescence signal I(t)

Middle panels

- Scattering signal S(t)
- Beam profile
- Split detector position

Lower panels

Scattering cross section C(t)

Identification as tar described in Corbin et al. [Nature npj Climate & Atmos. Science 2019]

Anomalous SP2 signals: identified as tar

Evaporating, non-incandescing tar [1/2]

Ratio of C(t) when exiting/entering beam R(20%, -20%) [-]

 $578 \text{ of } 2.5 \times 10^5$ particles partially evaporated.

False negatives not quantified.

Evaporating, non-incandescing tar [2/2]

Overall trends show similar behaviour.

All normalized to C(-3%).

Anomalous SP2 signals: identified as tar

Incandescing tar identified in combination with light-scattering analysis

Conclusions

Joel.Corbin@nrc-cnrc.gc.ca Martin.Gysel@psi.ch Atmos Chem Phys Discuss 2019 doi:10.5194/acp-2019-568

1. <u>Tar brC</u>, not just soot, matters for climate warming by smoke from wildfires and marine engines

	LAC type				
Property	Soot BC ●	Char BC 🔘	Tar brC 🔵	Soluble brC 🔵	
Solubility ^a	Negligible s	solubility in con	mon solvents	Soluble	
Light absorption	300–1000 ni	m [detected as	BC at NIR λ]	300–600 nm	
Chemical state	Contorted graphene layers		Amorphous	Distinct molecules	
Carbon bonding	sp ² dominated		sp^2 and sp^3	sp ² and sp ³	
Vapourization at ^b	$\sim 4000\mathrm{K}[\mathrm{EC},\mathrm{rBC}]$		~ 1000 K [EC]	< 600 K	
Produced by	Flame	Fuel-droplet	Partial	Oxidation	
	synthesis	pyrolysis	pyrolysis	pyrolysis,	
Morphology	383.23			Spheres or	
r - 3,	Bearily			coatings	
Diameter ^{c} [μ m]	0.02-0.2	1–5	0.03-0.3	0.05–0.2	

2. Real-time tar identification was possible by combining time-resolved light-scattering and laser-induced incandescence.

Acknowledgements

Prem Lobo, NRC

Martin Gysel, NRC

BLACARAT EU Grant

Corbin et al., Nature npj Clim Atmos Sci 2019

Defining and measuring BC

Background: ship fuels

➤ "Heavy Fuel Oil" <u>HFO</u>:

- o Cheap, crude-oil residual
- o Heavy metal impurities
- o High S (2.3% = 23,000 ppm)

Emissions may exceed SECA limits ->>

➤ "Distillate fuels" fuels:

- o Marine Gas Oil (MGO, 780 ppm S)
- o Diesel (<u>DF</u>, 7 ppm S)
- ➤ Different fuels, different
- o PM emissions and composition
- o Climate effects
- o Health effects for HFO and DF [1]

Marine gas oil (MGO) and diesel (DF) size distributions

