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Some prior work diffraction effects in radiometry:

Theory: | /1—35(V)—312 (V)
Rayleigh (Phil. Mag. 11, 214, 1881): Rayleigh formula

E. Lommel (Abh. Bayer. Akad. 15, 233, 1885): Fresnel diffraction, unfocussed
E. Wolf (Proc. Roy. Soc. A 204, 533, 1951)
J. Focke (Optica Acta 3, 161, 1956)

Radiometry (mostly at NMls):

C.L. Sanders and O.C. Jones (J. Opt. Soc. Am. 52, 731, 1962)

N. Ooba (J. Opt. Soc. Am. 54, 357, 1964)

W.R. Blevin (Metrologia 6, 39, 1970): effective-wavelength approximation

W.H. Steel, M. De, and J.A. Bell (J. Opt. Soc. Am. 62, 1099, 1972): extended source
L.P. Boivin (Appl. Opt. 14, 197; 14, 2002; 15, 1204, 16, 377, 1972-1977): general




Physical optics: key approximations
« Scalar-wave approximation
* Kirchhoff diffraction theory, cont’d.
* Fresnel-paraxial (Gaussian optics) approx.

Consider this optical system:
possible path
\X y for light to take

Ty Py _
u

Source Ao 1 Ap. 2 S = Y = M.t Detector
L= Zx L=Z L=Z= L= =z,

Repeated application of approximations gives

1 .
[ dx dy;... [ dxy dyy G(P,%)---G(Xy, Q) -exp[iXy Sl (X, )]

D= N

Gustav Kirchhoff



Identification of 3-element subsystems:
' SAD subsystems: :  sAD:
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Fig. 9.7. Optical setup conceptually treated as three SAD setups for purposes of
diffraction effects.



Diffraction Effect in SAD systems (point source)

_ flux on detector

L=
flux on aperture

Vv, U, w (& A): depend on geometry, focusing power (& temperature)

Limiting geometries

geometrically
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Spectral case:

L=1-L;(v,w)

Thermal case:
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Integral representation of Lg(v,w), Ly (v,w), Fg(A,w) and F,(A,w)
» asymptotic expansions (large v, small A)
» exact evaluation by appropriate quadrature (large v, small A)
» generalizable to extended sources...

Sample asymptotic results for a point source:

{ 2 cos(2v) | 1- 20w* —90w" —20w° + W’ (1-18w” +w*)sin(2v) .\ }

Lg (v, W) 1 —
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Palindromic polynomials at all orders, as well as in L,(v,w) and F,(A,w).

In particular, consider small-4 form for spectral power:

Limiting case: Non-limiting case:
(I}.-l (’:U F 7 p f ‘I}‘,]_ (I:U 9
() ~ 1 - Aay(2) - V*{ay(2) + [ap(A)]) 200) R 1+ dag(2) + 1/ *{ap(d) + [ap(A)]*}

+ P {ay(d) + [ax (D]}

All a-functions involve trivial phase factors and smooth functions of A, facilitating interpolation over
wavelengths where integral representations are more practical than exact numerical evaluation!



Extended sources:
Generalizations of all previous results are also in hand.

General formula—

{1-X)(2+0x)°’ -1} (~
— jo dA L(u,v)L, (1)

+1
D = CL dx
C=4r°R!R’R: /(d?d7e;)® (depends on geometry)

W.H. Steel et al., J. Opt. Soc. Am. 62, 1099 (1972)
L.P. Boivin, Appl. Opt. 15, 1204 (1976)

E.L. Shirley, Appl. Opt. 37, 6581 (1998), JOSA A 21, 1895 (2004); 3
JOSA A 33, 1509 (2016 Tt
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P. Edwards and M. McCall, / L x\x\%‘%

Appl. Opt. 42, 5024 (2003)—treats more geometries
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Principle of measuring total solar irradiance:

(1.) Have an aperture of known area
(2.) Measure total power passing through that aperture

U URT& mm

R=6.985 mm
R=6.0325 mm
R=5.08 mm
R=3.9894 mm Electrical
A . . . . . . . . . : i Substitution
Radiometer
AP1 AP2 AP3 AP4 APS
\ / / Weak
Y h thermal link
Not to scale Heat sink
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Sources of Differences in On-Orbital Total
Solar Irradiance Measurements
and Description of a Proposed
Laboratory Intercomparison
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There is a 5 W/m’ (about 0.35 %)
difference between current on-orbit Total
Solar Irradiance (TSI) measurements. On
18-20 July 2005, a workshop was held at
the National Institute of Standards and
Technology (NIST) in Gaithersburg,
Maryland that focused on understanding
possible reasons for this difference,
through an examination of the mstrument
designs, calibration approaches, and
appropriate measurement equations. The
mstruments studied 1n that workshop
included the Active Cavity Radiometer
Irradiance Monitor TIT (ACRIM IIT) on the
Active Cavity Radiometer Irradiance
Monitor SATellite (ACRIMSAT), the Total
Irradiance Monitor (TIM) on the Solar
Radiation and Climate Experiment
(SORCE), the Variability of solar
[Rradiance and Gravity Oscillations
(VIE.GQ) on the Solar and Heliospheric
Ohearmrmatarr (SOHEOY and the Farh

a session on laboratory-based comparisons
and the application of new laboratory
comparison techniques. The workshop

has led to investigations of the effects of
diffraction and of aperture area measure-
ments on the differences between nstu-
ments. In addition, a laboratory-based
instrument comparison 1s proposed that
uses optical power measurements (with
lasers that underfill the apertures of the
TSI instruments), irradiance measurements
{with lasers that overfill the apertures of
the TSI instrument), and a cryogenic
electrical substitution radiometer as a
standard for comparing the mstruments.

A summary of the workshop and an
overview of the proposed research efforts
are presented here.
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t1mt1- A1 Frartian ~alemnlatiane total ealar




Sources of Differences in On-Orbital Total
Solar Irradiance Measurements
and Description of a Proposed

Volume 113

J. J. Butler

National Aero
Administratiol
Goddard Spac
Greenbelt., MI]

B. C. Johnsorn
E. L. Shirley

National Instit
and Technolog
Gaithersburg.

and

[OP PUBLISHING METROLOGIA

Metrologia 49 (2012) S29-S33 doi:10.1088/0026-1394/49/2/529

Total solar irradiance data record
accuracy and consistency improvements
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0.12% diffraction gain
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variation in TSI
relevant to
understanding
climate change!



Application of algorithmic speedups to
calculation of diffraction-corrected throughput
of a multi-stage solar radiometer:

BEFORE FFT TRICK (also, using 10.0 GB memory):

0.%02000000000000E-03 0.762000000000048E+01 0.317548522457192E-02 cap
47570.374u 12.473s 1:44:52.68 756.1% 0+0k 0+506241c Opf+0w

AFTER FFT TRICK (also, using 1.3 GB memory):

0.%0Z2000000000000E-03 0.762000000000048E+01 0.317948922456333E-02 cap
678.938u 1.529= 11:20.24 100.0% 0O+0k 0+137441c Opf+0w

*1.S. Rubin, et al., Appl. Opt. 57, 788 (2018)



Beyond the SAD paradigm:
» Multistage optics trains
» Vignetting effects
One-edge effects:

—> corrections proportional to A or 1/T.

Two-edge effects (most important for source-pinhole-baffle-detector cases):
—> corrections proportional to A2 or 1/T2.

Example: blackbody calibration in NIST’s Low-background infrared facility:
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Some 3-element subsystems can be treated for total or spectral power diffraction effects efficiently. We are moving to treating

other effects more automatically.



Light that is diffracted twice...

T

{‘VA CR Aperture

Light that is diffracted twice...2"d bounce might be on an aperture normally not illuminated
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Light that should be diffracted 1x might be reduced by diffraction at BB pinhole aperture
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A baffle nominally not illuminated might diffract light after the pinhole diffracts it on the baffle edge...

In another context, having a blackbody recessed from the S of a SAD combination can also have a secondary effect
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Treatment of a multi-stage system, in practice:

93.9246 cm

85.5553 cm

81.9688 cm

77.6559 cm

1.9998 ¢ —3.7922 cm
| [ 3.2930 cm u
|
1

R =

At small wavelength, one can show*
D,(4)
D, (1)

=1+ad+a,A°+R,(1) (a,,a;)=analytic

neglected for A < 4,
R; (1) =
computed for A > 4

At high temperature, one can show*

o b b
o :1+?1+T_22+ R (T) (b,,b,)=analytic
0

R, (T)~ % at large T (usually)

*Based on an extended boundary-diffraction-wave
formulation; E. L. Shirley, J. Mod. Opt. 54, 515 (2007)
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Comparison of measured and
calculated diffraction effects:

Effect of toothing of aperture:

- reduction in diffraction effect because
of phase cancellations in ugp,,(ry)-

0.04 r I :
0.03 r - a .
L.P. Boivin, TE 0.02 + A ]
(Appl. Opt. i~ -
17, 3323, T
1978) meas. 001 | LA 1
0.00 l ' '
0.00 0.01 0.02 0.03 0.04
F -1
calculated

Statistical analysis suggests

Fig. 7. Photograph of the edge of the 4-mm dism aperture having
120 teeth, The mapnification 3 about 76X
0.04
3
0.03 r 5
T
= 0.02r -
M
0.01 | diff. effect for same
xg"' for toothed versions
#" «— of same apertures
0.00 ¥ . x
0.00 0.01 0.02 0.03 0.04

~2 % systematic error in calculated
diffraction corrections.

F.~1




Summary of results:

* Diffraction affects radiometry
* Largely understood

* Much work has been done

* We have programs that are efficient and pull out
asymptotic trends, easing or obviating calculations

* Codes are ever more efficient, and are available



