Development of a new absolute diffuse reflectometer at NRC

Status and Outlook

Luke Sandilands, Éric Côté and Joanne Zwinkels,

NRC Metrology

CORM 2019, October 28th, 2019

Outline

- ☐ Realizing a scale for diffuse reflectance via the Sharp-Little method
- □ NRC's new absolute diffuse reflectometer
- ☐ Beyond Sharp-Little: sphere non-uniformity, finite port thickness & baffle
- □ Preliminary data
- ☐ Future work

Diffuse reflectance

- ☐ Illumination and/or viewing is diffuse (spans entire hemisphere above sample)
- ☐ Suitable for matte surfaces
 - paper
 - textiles
 - powders
- ☐ Various configurations: (d,0°), (d,d), etc.

Directional-hemispherical (0°,d)

Traceability chain for diffuse reflectance at NRC

How to measure absolute diffuse reflectance?

- ☐ Goniometric techniques
 - □ NPL, MIKES

- ☐ Integrating sphere-based techniques
 - $\hfill \square$ NRC, NIST, PTB, KRISS, others...

The Sharp-Little method for (d,0°) reflectance

☐ Shading effect of the baffle

$$\frac{E_s}{E_w} = \rho_{ave} = \rho_w a_w$$

□ Ratio of detector signals

$$\frac{i_s}{i_r} = \frac{\rho_s}{\rho_w} \times \frac{E_s}{E_w} = \frac{\rho_s}{\rho_w} \times \rho_w a_w$$

$$\rho_s = \frac{i_s}{i_r} \times \frac{1}{a_w}$$

CCPR-K5 Key Comparison

Sample: Spectralon (sintered PTFE)

The existing NRC absolute reflectometer

Limitations

- ☐ Filter-based (fixed wavelengths & bandpass)
- Restricted spectral range (UV-VIS)
- □ Labour-intensive

New absolute reflectometer

Key features:

- Broadband (250-2000 nm)
 - W & D lamps
 - ☐ Detectors: Si, PMT, Ext. InGaAs
- Variable bandwidth
- ☐ Full automation
- Custom sintered PTFE integrating sphere

Challenges from sphere asymmetry

Assumptions of SL method:

- ☐ Spherical symmetry (including sample)
- ☐ Homogeneous sphere surface
- Ports have zero reflectance
- ☐ Ignore baffle beyond shading effect

$$\frac{E_s}{E_w} = \rho_{ave} = \rho_w a_w$$

$$\frac{i_s}{i_r} = \frac{\rho_s}{\rho_w} \times \frac{E_s}{E_w} = \frac{\rho_s}{\rho_w} \times \rho_w a_w$$

Mitigating sphere asymmetry

Steps:

- ☐ Secondary 'reference' port
 - ☐ Ensures local geometry viewed by sample and reference are similar
 - □ Characterize multiple PTFE references to characterize/correct nonuniformity
- Modelling
 - Monte Carlo ray tracing of directional dependence of real port reflectance
 - Numerically evaluate effective baffle area

PTFE non-uniformity

Accounting for non-uniformity:

See also: Sun & Ma, SPIE 2014

reflectance of specific reference part

$$\rho_{s} = \frac{i_{s}}{i_{w}} \times \frac{1}{a_{w}} \times \frac{\rho_{w}}{\bar{\rho}}$$

average PTFE reflectance

Estimate non-uniformity by measuring reflectance of an arbitrary sample with multiple PTFE reference parts.

Reflectance of realistic port

□ Accounting for differences between first and second reflections:

$$\rho_S = \frac{i_S}{i_W} \times \frac{1}{a_W} \times \frac{\rho_W}{\overline{\rho}} \times (1 - a_p \Delta \rho)$$
fractional port area reflectance difference

Second reflection:

- □ Can estimate Δρ using Monte Carlo ray tracing
 - ☐ C. Tang et al., Applied Optics 2018
- ☐ Correction: 0.08%

See also: Hwang et al., Metrologia 2013

Port screening by baffle

- ☐ Viewed from the sample position, the baffle stem obscures one of the two view ports
- □ Compared with the 'reference' wall position, the sample sees a slightly larger effective area and receives a correspondingly larger diffuse flux

$$\rho_S = \frac{i_S}{i_W} \times \frac{1}{a_W} \times \frac{\rho_W}{\overline{\rho}} \times \frac{1 - a_p \Delta \rho}{1 + a_{stem}}$$
Effective fractional stem area

□ Correction: ~ - 0.24%

Preliminary data: pressed PTFE tablet

W source, Si photodiode, 8 nm bandpass, 380 to 1030 nm, compared with existing NRC Sharp-Little scale

Level is ~ 0.4% higher, more rapid dispersion in UV

Preliminary data: pressed PTFE tablet

W source, Si photodiode, 8 nm bandpass, 380 to 1030 nm, compared with angle-integrated BRDF data

BRDF Data: Baribeau & Zwinkels, SPIE

2012

Level in good agreement, more rapid dispersion in UV

Preliminary data: sintered PTFE (Spectralon)

W source, Si photodiode, 8 nm bandpass, 380 to 1030 nm

Overall level in good agreement, modest spectral distortion in UV

Future

- Measure more PTFE reference parts
 - ☐ Reduce uncertainty due to nonuniformity
- ☐ Uncertainty budget
- ☐ Extend spectral range with PMT (UV) and InGaAs (NIR)
- ☐ CCPR-K5 Spectral Diffuse Reflectance (2020)

Thank you for your attention!

Acknowledgements

Li-Lin Tay
Stacey Lee
Hugo Breton (NRC Design & Fabrication)

Contact

Luke Sandilands, NRC Metrology luke.sandilands@nrc-cnrc.gc.ca

Preliminary data: sintered PTFE (Spectralon)

*outlier PTFE reference specimen removed

CCPR-K5 Key Comparison

Preliminary data: pressed PTFE (Weidner & Hsia)

Reflectance geometries

$$\rho = \frac{P_r(\Omega_r, \theta_r, \varphi_r, \Omega_i, \theta_i, \varphi_i)}{P_i(\Omega_i, \theta_i, \varphi_i)}$$

Measurement	Geometry	Example materials
Specular	$\begin{array}{l} \theta_{i} = \theta_{r} \\ \Omega_{i}, \ \Omega_{r} \rightarrow 0 \\ \text{In plane} \end{array}$	Mirror
Bidirectional (0°/45°)	$\begin{aligned} \theta_i &= 0 \\ \theta_r &= \pi/4 \\ \Omega_i, \ \Omega_r \neq 0 \end{aligned}$	Safety materials
Hemispherical (diffuse)-directional	$\begin{aligned} &\Omega_i = 2\pi \\ &\Omega_r \to 0 \\ &\theta_r = 0 \end{aligned}$	Paper, textiles

How to measure diffuse reflectance?

For *perfectly* diffusing surfaces + spherical geometry, reflected flux distributed evenly over the sphere surface.

Sum up multiple reflections:

$$v \propto \phi_1 + \phi_2 + \phi_3 + \dots$$

$$\propto \phi_1 \times (1 + \rho_{ave} + \rho_{ave}^2 + \dots)$$

$$\propto \frac{\rho_{0,d} \phi_o}{1 - \rho_{ave}}$$

$$\phi_1 = \rho_{0,d} \phi_o$$

$$\phi_2 = \rho_{ave} \phi_1$$

Compare with a reference to get absolute value.

Spectrophotometry: what is it good for?