

NRC.CANADA.CA

overview

- NRC photometry and spectrophotometry
- Growth of solid-state lighting
- NRC solid-state lighting measurement facility
- Study of different LED sources:
 - LED COBs for luminous intensity
 - LED corn lamps for luminous flux

NRC photometry and spectrophotometry facility

Luminous intensity measurement

Total luminous flux measurement

Incandescent lamps as working standards

NRC photometry and spectrophotometry facility

1 metre monochromator

Scanning spectroradiometer

Rise of LEDs

Growth of solid-state lighting

We have to be prepared for increasing number of LED measurement requests

NRC solid-state lighting measurement facility

1.6m sphere for 4π and 2π LED total flux measurement

50cm sphere for 4π and 2π LED total flux measurement

NRC solid-state lighting measurement facility

Angular measurement

Spatial uniformity scan

Chip on board (COB) LED module

COB advantages

- 1. Compactness
- 2. Spatially uniform (?)
- 3. Thermal stability (?)
- 4. High brightness

Chip on board (COB) LED module

Mounts with cooling modules for the COBs

Test of the COB LEDs

- We verified that the COBs
 - have symmetric angular emission and,
 - the photometer's signal is linearly proportional to 1/distance²
- Effect of temperature on the COB's performance was studied

Geometry verification

We choose the COBs with symmetric angular profile and linear distance dependence

Fractional value

Value of the signal when lamp is switched on

$$\text{fractional value} = \frac{S(t) - S(t_0)}{S(t_0)}$$

In this presentation S is the signal amplitude from either a photometer or a spectrometer

Temperature effect

COB's temperature is controlled and measured by a thermoelectric controller

Temperature effect

COB's temperature is kept at $T = 31^{\circ}C$ and measured by the thermoelectric controller

NATIONAL RESEARCH COUNCIL CANADA

COB's temperature is measured by the thermoelectric controller, however, it is drifting freely

temperature

frac. change

simpler temperature control solution

COB 1

Linear fit = a t + b where a = $0.0012 \% h^{-1}$

Average temperature = 32.7 (±0.12) °C

COB 2

Linear fit = a t + b where a = $-0.0009 \% h^{-1}$

Average temperature = 33.3 (±0.17) °C

Test of the COB LEDs

- COBs with symmetrical angular emission and linear dependence on the inverse square of the distance are selected,
- Effect of temperature on the performance of the module are tested,
- Aging of the selected module has been in progress.

Omnidirectional LED module for luminous flux

Results

- Photomteric and spectral measurements have been recorded simultaneously.
- Four lamps were aged and monitored for more than 1 month.
- Two lamps are 45 Watt at 3000K and two lamps are 20
 Watt at 2700K.
- Only the second set showed a predictable behavior.

Results

Comparison of two lamps of the same model

Lamp 1

y = a x + b where $a = 0.0013 \% h^{-1}$

STD of linear section = 0.056

Lamp 2

y = a x + b where $a = 0.0023 \% h^{-1}$

STD of linear section = 0.095

Comparison of two lamps of the same model

- After certain amount of time the LED output becomes linear and can be estimated for future use.
- Linear fit has different coefficients for the two lamps, however, they are the same order of magnitude.

Initial negative gain and then positive gain

NATIONAL RESEARCH COUNCIL CANADA

wavelength

- Different wavelengths emitted from the LED module
 - have time dependent gain, however,
 - the luminous integral of all wavelengths increases over time and matches the photometer signal (as it should).

THANK YOU

Amin Rasoulof • William Neil • Eric Côté • Arnold Gaertner

Amin.Rasoulof@nrc-cnrc.gc.ca

