Photobiological lighting adaptation scenarios for healthy adaptive buildings

Presenting by

Mojtaba Parsaee

PhD candidate in Architecture School of Architecture, Laval University

Supervisors:

Claude Demers (Architecture)

Marc Hébert (Biology)

Jean-François Lalonde (Computer Engineering)

André Potvin (Architecture)

Lighting adaptation scenarios

Protocols and profiles to provide and adjust indoor lighting environment to occupants' needs and the local climate

Local climate

Buildings

Occupants' needs

Photoperiods Daylighting

Smart/Intelligent Adaptive/Responsive Photobiological psychological Biophilic

Local climate

Buildings

Occupants' needs

Lighting Adaptation Scenarios

Photoperiods Daylighting

Smart/Intelligent Adaptive/Responsive Photobiological psychological Biophilic

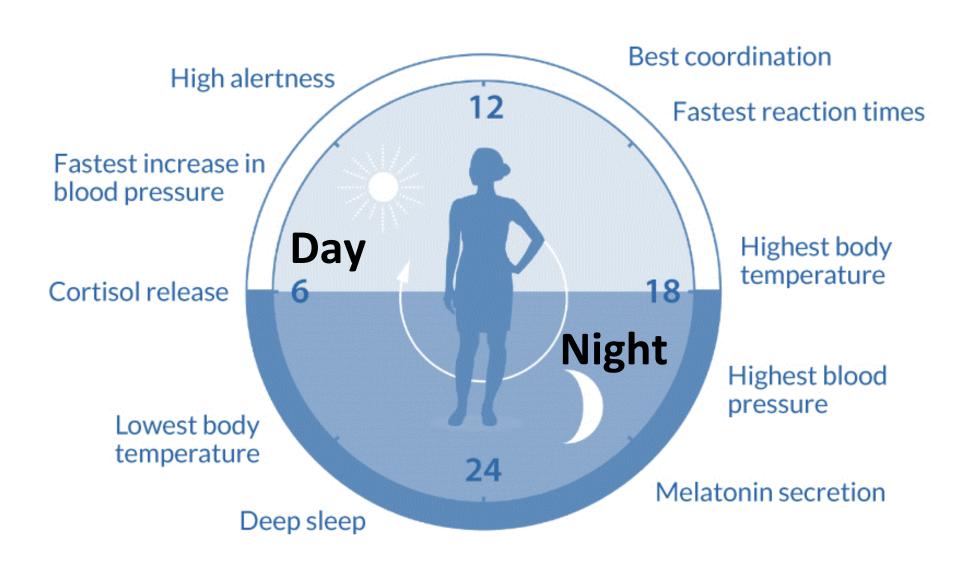
Occupants' needs

Image forming effects

Vision
Visual comfort

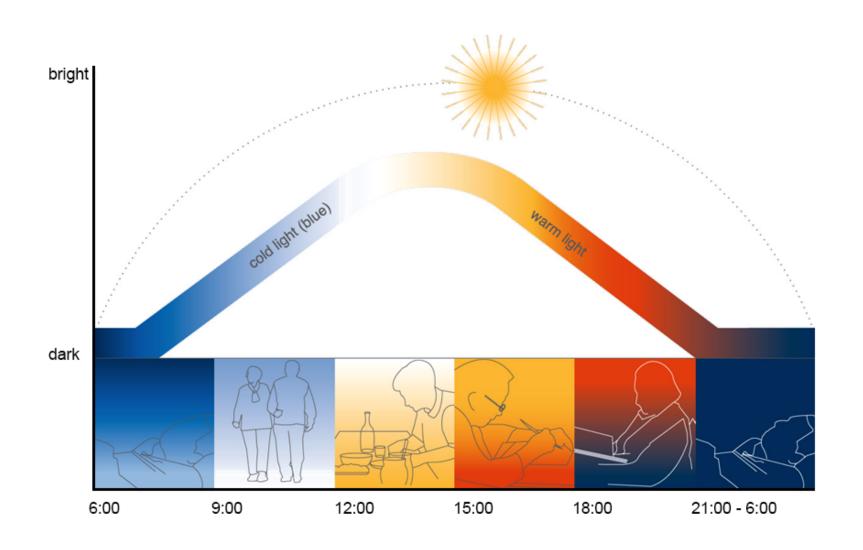
Non-image forming effects

Circadian rhythms
Alertness
Performance
Mood



View & connectivity to nature & natural cycles

Psychological & physiological effects

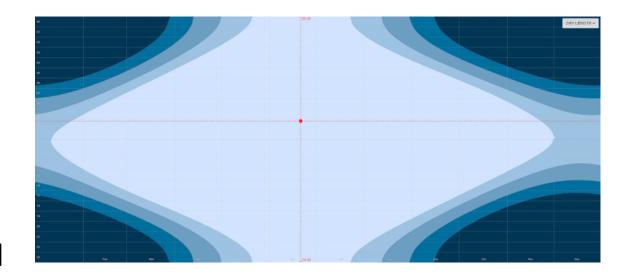

Photobiological psychological Biophilic

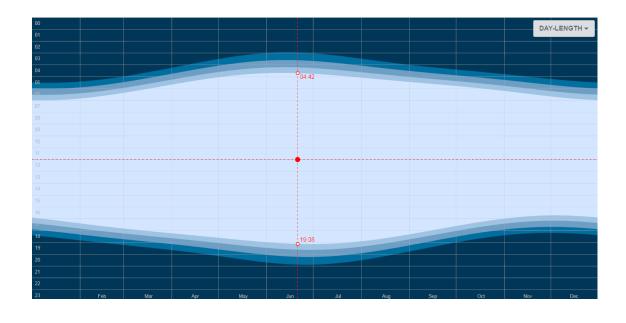
Non-image forming effects

Proper Light at Proper Time

CIE (October 3, 2019), Position statement on non-visual effects of light

Connectivity and accessibility to nature and natural cycles


Local climate



Cambridge Bay [69°N]

Los Angeles [34°N]

Photoperiods Daylighting

Buildings

Lighting Adaptation Scenarios

Smart/Intelligent Adaptive/Responsive Artificial lighting (LED)

Question

What lighting scenarios must be followed in the building to adjust indoor lighting to occupants' needs for a particular task and maximize the positive use of outdoor nature?

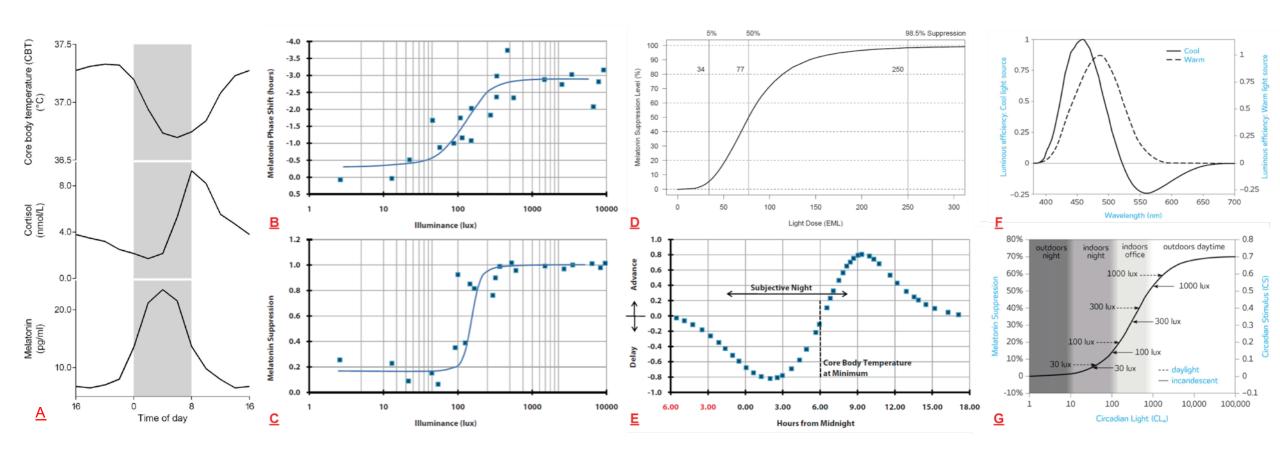
Systemic literature review

Premise

Lighting standards
Photobiological studies
Biophilic guidelines

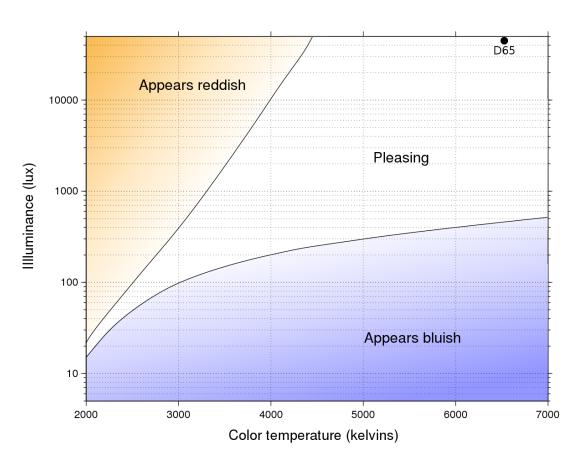
Criteria

Image forming
Non-image forming
Task requirements
Daylight availability


Main parameters

Parameter	Metric	Unit
Intensity	Illuminance	lux
	Luminance	Cd/m2
	Equivalent Melanopic Illuminance	EM lux
	Equivalent Melanopic luminance	EM cd/m2
	Circadian stimulus	CS
Timing	Time	second
Duration	Time	second
Color	Correlated Color Temperature (CCT) CIE Chromaticity (CIE xyz) Color Rendering Index (CRI)	Kelvin

Refer to:


CIE, 1955, 2014, 2018a, 2018b, 2019; Dai, Huang, Hao, Lin, & Chen, 2018; DiLaura, Houser, Mistrick, & Steffy, 2011; Enezi et al., 2011; International WELL Building Institute, 2018; Jung, 2017; Jung & Inanici, 2019; Konis, 2017; Lucas et al., 2014; Parsaee, Demers, Hébert, Lalonde, & Potvin, 2019; Rea & Figueiro, 2016; Rea, Figueiro, & Bullough, 2002

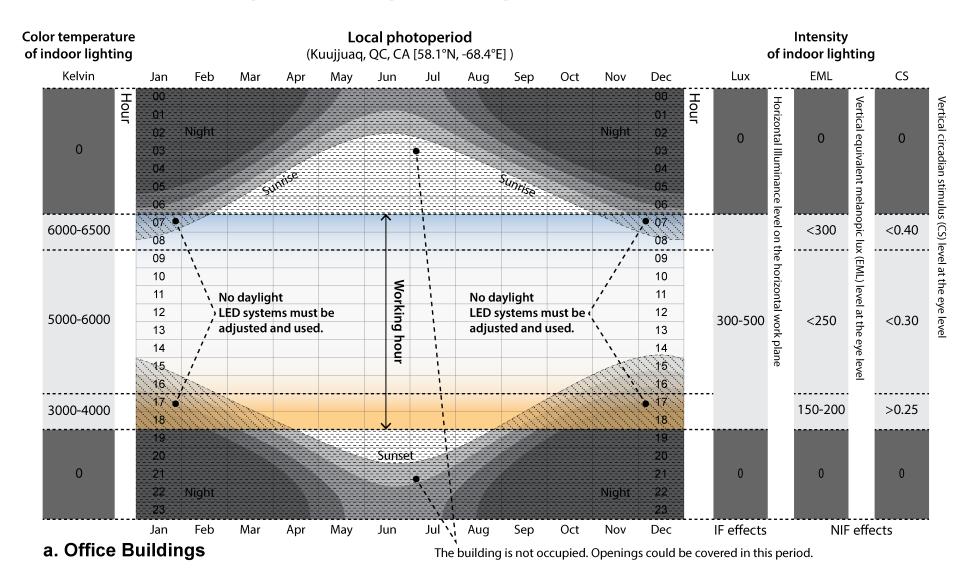
Effective patterns

Refer to :
Boivin & Boudreau, 2014; DiLaura et al., 2011; Konis, 2017; Lucas et al., 2014; Rea & Figueiro, 2016; Rea, Figueiro, & Bullough, 2002

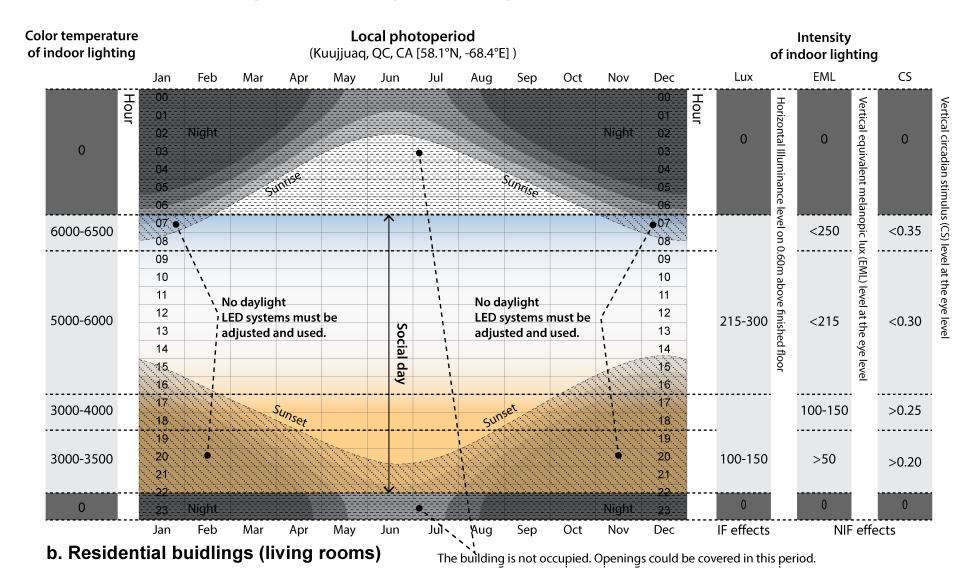
Effective patterns

Kruithof curve , Retrived by Hankwang from (Kruithof, 1934; Weintraub, 1999)

(Dai, Cai, Hao, Shi, & Wei, 2018)

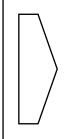

Timing of light impulse

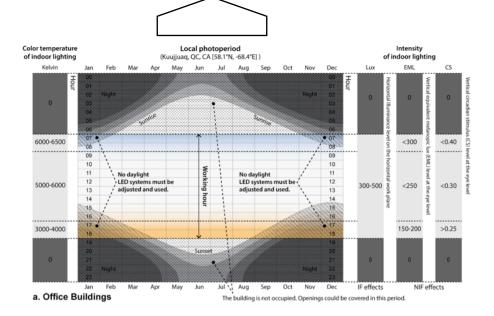
Timing	Note	
7h to 9h	the biological waking time and becoming vigilant	
9h to 17h	the biological day and being highly vigilante for working	
17h to 19h	Preparation for the biological night becoming less vigilant	
19h to 7h	the biological night and being less vigilant	


Light-related Health & wellbeing

- ✓ An improper balance between these aspects can compromise human well-being, health and functioning related to lighting ambiance.
- ✓ Many lighting products, especially LED systems, are available in the market that are aimed to affect non-image forming aspects.
- ✓ Don't unnecessarily decrease or restrict availability and accessibility to daylight and outdoor nature inside buildings.

Photobiological lighting adaptation scenario


Photobiological lighting adaptation scenario


Photobiological lighting adaptation scenario

Façade system Daylighting

Artificial lighting

Conclusion & future studies

- Lighting adaption scenarios are the essential requirement of climateresponsive, adaptive and healthy buildings.
- Lighting scenarios could adapt the indoor lighting environment to photobiological needs of occupants in a specific space.
- Scenarios could maximize the use of daylighting and natural cycles inside buildings through responding to local photoperiods.
- Control systems could be developed based on lighting adaption scenario.

Conclusion & future studies

- Further studies are required to consider all NIF issues in lighting design and adaptation scenarios.
- Further developments are needed to offer an integrated and unified metric/unit and analysis method representing IF and NIF effects and biophilic quality of lighting.
- Standards and guidelines must be developed regarding vertical and horizontal lighting needs in order to offer simplified recommendations for architects and designers.
- Psychological and cultural aspects as well as individual's preferences must be considered in lighting adaptation scenarios.

Thank you for your attention! Any question?

Faculté d'aménagement, d'architecture, d'art et de design École d'architecture

References

Boivin, D., & Boudreau, P. (2014). Impacts of shift work on sleep and circadian rhythms. *Pathologie Biologie*, 62(5), 292-301.

CIE. (1955). Natural Daylight, Official recommendation. In Compte Rendu CIE 13th Session (Vol. 2, pp. 2-4).

CIE. (2014). Termlist. Retrieved 22 November 2018, from Commission internationale de l'éclairage http://eilv.cie.co.at/term/659

CIE. (2018a). CIE System for Metrology of Optical Radiation for ipRGC-Influenced Responses to Light (CIE S 026/E:2018). In. CIE Central Bureau, Vienna, Austria: Commission internationale de l'éclairage.

CIE. (2018b). International standards. In. CIE Central Bureau, Vienna, Austria: Commission internationale de l'éclairage.

CIE. (2019). Position statement on non-visual effects of light - recommending proper light at the proper time, 2nd edition (october 3, 2019). Retrieved from CIE Central Bureau, Vienna, Austria: http://www.cie.co.at/publications/international-standards

Dai, Q., Cai, W., Hao, L., Shi, W., & Wei, M. (2018). Spectral optimisation and a novel lighting-design space based on circadian stimulus. 50(8), 1198-1211.

Dai, Q., Huang, Y., Hao, L., Lin, Y., & Chen, K. (2018). Spatial and spectral illumination design for energy-efficient circadian lighting. Building and Environment, 146, 216-225.

DiLaura, D. L., Houser, K. W., Mistrick, R. G., & Steffy, G. R. (2011). The lighting handbook: Reference and application. In.

Enezi, J. a., Revell, V., Brown, T., Wynne, J., Schlangen, L., & Lucas, R. (2011). A "melanopic" spectral efficiency function predicts the sensitivity of melanopsin photoreceptors to polychromatic lights. *Journal of Biological Rhythms*, 26(4), 314-323.

International WELL Building Institute. (2018). The WELL Building Standard. Retrieved from https://standard.wellcertified.com

Jung, B. Y. (2017). Measuring circadian light through High Dynamic Range (HDR) photography. (Master of Science in Architecture), University of Washington, Washington.

Jung, B. Y., & Inanici, M. (2019). Measuring circadian lighting through high dynamic range photography. 51(5), 742-763.

Konis, K. (2017). A novel circadian daylight metric for building design and evaluation. Building and Environment, 113, 22-38.

Kruithof, A. A. (1934). Aanslag van het waterstofmolecuulspectrum door electronen. Utrecht University,

Lucas, R. J., Peirson, S. N., Berson, D. M., Brown, T. M., Cooper, H. M., Czeisler, C. A., . . . O'Hagan, J. B. (2014). Measuring and using light in the melanopsin age. *Trends in neurosciences*, 37(1), 1-9.

Parsaee, M., Demers, C. M., Hébert, M., Lalonde, J.-F., & Potvin, A. (2019). A photobiological approach to biophilic design in extreme climates. Building and Environment, 154, 211-226.

Rea, M. S., & Figueiro, M. G. (2016). Light as a circadian stimulus for architectural lighting. Lighting Research & Technology, 1-14. doi:https://doi.org/10.1177/1477153516682368

Rea, M. S., Figueiro, M. G., & Bullough, J. D. (2002). Circadian photobiology: an emerging framework for lighting practice and research. Lighting Research & Technology, 34(3), 177-187.

Weintraub, S. (1999). The color of white: is there a" preferred" color temperature for the exhibition of works of art? Western Association for Art Conservation Newsletter, 21(3), 16-17.