# Measurement of LEDs and Solid State Lighting

Yoshi Ohno (Director, CIE Div.2)

Optical Technology Division
National Institute of Standards and Technology
Gaithersburg, Maryland USA



### **Outline**

- 1. SSL products commercialization support
- 2. Measurement standards for LED/SSL products
- 3. NIST facilities for LED/SSL measurements
- 4. Research on Color Quality of LED/SSL sources



### **Solid State Lighting – Driving Force**





### **History of Light Sources**



IEEE Circuits and Devices Vol 20, No 3, pp 28-37, May/June, 2004



### Luminous Efficacy – Goal of SSL





#### Rationale for 200 lm/W

Luminous
Efficacy
of a Source
[lm/W]

("Wall-plug efficiency")

Luminous flux [lm]

Electrical power [W]

Luminous
Efficacy of
Radiation
[Im/W]

(Theoretical maximum lm/W)

Luminous flux [lm]
Optical power [W]

X Radiant efficiency

(External Q.E.)

Optical power [W]
Electrical power [W]

Goal:

**200 lm/W** 

400 lm/W

50 %



### **Luminous Efficacy of Radiation**





### **RGB(Y)** white LED Simulation



|      | 0.4369 | х        |
|------|--------|----------|
|      | 0.4041 | у        |
| K    | 3000   | CCT      |
|      | 0.000  | Duv      |
|      | 86     | CRI (Ra) |
| lm/W | 401    | LER      |







### **External Quantum Efficiency of LEDs**



(1) Mitsubishi Cable: III-Vs Review, Vol. 16, No. 4, p.34 (May, 2003).

(2) Nichia Chemical Co.: Yamada et. al., Jpn. J. Appl. Phys. Vol. 41 (2002) pp. L 1431-L 1433.

Source: Mike Krames (Lumileds)



### SSL products are coming out

### **Niche applications**

















**General lighting applications** 



### **DOE's SSL Commercialization Support**

#### **DOE's Lab-to-Market strategy**



http://www.netl.doe.gov/ssl/materials 2007.html



### DOE Energy Star program for SSL products

#### Final version 9/12/2007

- SSL products for general illumination (residential and commercial applications)
- Category A (niche applications),
   Category B (general lighting)
- Requirements for luminaire efficacy, chromaticity, and CRI (Ra >75 for indoor applications).
- Ensure quality as well as energy efficiency
- Requires standards for test methods.
- Requires laboratory accreditation.



|                           | Min. lm/W |
|---------------------------|-----------|
| Under cabinet kitchen     | 24        |
| Portable desk/Task        | 29        |
| Recessed downlights       | 35        |
| Outdoor porch lights      | 24        |
| Outdoor step lights       | 20        |
| Outdoor pathway<br>lights | 25        |
| Category B                | 70        |

http://www.netl.doe.gov/ssl/energy\_star.html



## DOE SSL Commercial Product Testing Program (CALiPER - formerly, CPTP)

- Workshop held Oct. 27, 2006
   http://www.netl.doe.gov/ssl/workshopHighlights-CPTP.htm
- Objective:
  - Provide high quality performance information, discourage low quality products.
  - Support R & D planning
  - Support ENERGY STAR
  - Inform industry test procedures and standards
- Key actors:
  - DOE, PNNL
  - Independent testing labs
- Tests may include total luminous flux, luminous Efficacy, color characteristics stability, life testing, and more.

Publication of CPTP Reports

Via website:

#### www.netl.doe.gov/ssl/comm\_testing.htm

- Summary reports (de-identified)
- Detailed reports
  - Must be requested via web form





### **NIST Role**

- Provide calibration services for LED and SSL products.
- Research on color quality.

#### NIST is funded by DOE for

- Developing NVLAP program for SSL Handbook 150-A, Round-robin proficiency testing.
- Measurement support
  - verification of measurements in CALiPER program
  - test of prototypes from DOE projects
- Standards development

NIST leads

- ANSI C78.377 chromaticity of SSL products
- IESNA LM-79 photometric measurement of SSL products
- CIE standard on color rendering (TC1-69)
- participating in other standards development



- 1. SSL products commercialization support
- 2. Measurement standards for LED/SSL products
- 3. NIST facilities for LED/SSL measurements
- 4. Research on Color Quality of LED/SSL sources



### Measurement of LED/SSL Products

#### LED chips / packages



#### LED modules / clusters





#### **SSL** products







#### **Measurement quantities**

- Total luminous flux (lm)
- Luminous efficacy (Im/W)
- Luminous intensity (CIE Averaged Intensity)
- Chromaticity, CCT, Duv, CRI
- Angular intensity distribution
- Luminaire efficacy (lm/W)



### Standards for measurement of LED/ SSL products

#### LED chips / packages



CIE 127:2007

does not address issues on high power LEDs

CIE TC2-46, TC2-58 CIE R2-36

**LED modules / clusters** 





No standards / recommendation

**CIE TC2-50** 

**SSL** products





No CIE publications, no TCs

IESNA LM-79 Photometric Meas. (draft)
IESNA LM-80 Life time (draft)
ANSI C78.377 Chromaticity (draft)



### CIE 127:2007 Measurement of LED (2nd ed.)

Major changes from last version (1997)

- New section on total luminous flux measurement.
  - Improved sphere geometries recommended
  - Partial LED flux defined.
- New section on spectral measurement (for colorimetric as well as photometric quantities)
  - Input geometries (irradiance mode, total flux mode, partial flux mode)
  - New recommendation on bandwidth and scanning interval (5 nm, for color)





Still does not address high power LEDs.



### A big issue in High Power LED measurement

#### <LED data example>

Flux Characteristics at 700mA, Junction Temperature, T<sub>J</sub> = 25°C

|                          |                   | Table 1.                                                                               |                                                                                  |                      |
|--------------------------|-------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------|
| Color                    | LUXEON<br>Emitter | Minimum Luminous<br>Flux (lm) or<br>Radiometric<br>Power (mW)<br>Φ√ [ <sup>1,2</sup> ] | Typical Luminous<br>Flux (lm) or<br>Radiometric<br>Power (mW)<br>Φ√ <sup>P</sup> | Radiation<br>Pattern |
| White                    | LXHL-PW09         | 60.0                                                                                   | 65                                                                               |                      |
| Green                    | LXHL-PM09         | 51.7                                                                                   | 64                                                                               | Lambertian           |
| Cyan                     | LXHL-PE09         | 51.7                                                                                   | 64                                                                               |                      |
| Blue <sup>pj</sup>       | LXHL-PB09         | 13.9                                                                                   | 23                                                                               |                      |
| Royal Blue <sup>#]</sup> | LXHL-PR09         | 275 mW                                                                                 | 340 mW                                                                           |                      |

- LEDs in SSL products are operating at much higher temperature. Im/W drops to 1/2 (in some cases) in luminaires.
- Large gap between published LED chip performance (lm/W) and SSL products performance (lm/W).
- A standard for high power LED specifications under realistic conditions (as used in luminaires) is urgently needed.



### Approach at NIST

- Measure high power LEDs at a full DC current at thermal equilibrium.
  - (A heat sink is needed; results vary depending on size of heat sink, ambient temp. and how LED is mounted)
- Use a temperature-controlled heat sink. Set heat sink temperature at 50°C, 60°C, ....
  - (need to be standardized)
- Use a metal-core PC board to mount the LED to the heat sink.











### Data example





### Measurement of SSL products

#### SSL products: mostly in a form of luminaire

#### **Traditional luminaire photometry** (Relative Photometry)

- Luminaires are measured for relative luminous intensity distribution and total luminous flux, <u>normalized by</u> <u>measured lamp total luminous fux</u>, e.g., per 1000 lm.
- Absolute scale is given by published lamp lumen values.



This method does not work for SSL products.



- Lamp and fixture cannot be separated.
- Published LED luminous flux values are not reliable.

Existing standards do not fulfill the needs for SSL.



## IESNA LM-79 Approved Method for Electrical and Photometric Measurement of SSL Products (Draft)

- Covers SSL products complete with electronics and heat sinks. --- therefore, no temperature issues (SSL product operated at 25°C ambient).
- Does not cover LED modules, LED packages, nor individual LEDs.
- Addresses both aspects of lamp photometry and luminaire photometry
  - Total luminous flux (lumen), electrical input, luminous efficacy (lm/W)
  - Chromaticity, CCT, CRI (4 π integrated)
  - Goniophotometry (angular intensity distribution)



#### IESNA LM-79

#### One of the methods recommended (for small SSL products)



- Total luminous flux and color quantities measured at the same time.
- No spectral mismatch correction needed for luminous flux.
- Color quantities measured as spatially (4π) averaged values.
- Total spectral radiant flux standards available from NIST.

A goniphotometer is needed for large-size SSL products)



#### **Chromaticity issues**

#### CCT and CRI do not tell the whole story.









## ANSI C78.377 Specifications for the Chromaticity of SSL products (Draft)





#### Flexible Color



- 2) *T* is chosen to be at 100 K steps (2800, 2900, ...., 6400 K), excluding those eight nominal CCTs listed in Table 1.
- 3)  $\Delta T$  is given by  $\Delta T = 0.0000108 \times T^2 + 0.0262 \times T + 8$ .
- 4)  $D_{uv}$  is given by  $D_{uv} = 57700 \times (1/T)^2 44.6 \times (1/T) + 0.0085$ .



- 1. SSL products commercialization support
- 2. Standardization for LED/SSL products
- 3. NIST facilities for LED/SSL measurements
- 4. Research on Color Quality of LED/SSL sources



#### NIST Facilities for LED/SSL measurements

### 2.5 m absolute integrating sphere



External reference flux:

$$\Phi_{\lambda,\text{ref}}(\lambda) = A \cdot E_{\lambda}(\lambda)$$

Spectral radiant flux of the test lamp:

$$\Phi_{\lambda,\text{test}}(\lambda) = \frac{y_{\text{test}}(\lambda)}{y_{\text{ref}}(\lambda)} \cdot k_{\text{cor}}(\lambda) \cdot \Phi_{\lambda,\text{ref}}(\lambda)$$

 $k_{\rm corr}(\lambda)$ : correction factor

\* Absolute scale of radiant flux is based on the NIST lumen.



### 2.5 m absolute integrating sphere



Measuring a refrigerator LED luminaire

#### For SSL products

- Total luminous flux (lm)
- Total spectral radiant flux (350 nm to 830 nm)
- Chromaticity, CCT, Duv, CRI (4 π averaged)
- 25°C ambient temp.
- SSL products up to ~30 cm diameter or linear ~1.5 m long.
- Individual LEDs also measured.



### 2.5 m absolute integrating sphere

### Data example (LED down light)









### Gonio-spectroradiometer



- Total spectral radiant flux scale
- Measurement of small SSL products
- Angular luminous intensity distribution
- Color uniformity





### Gonio-spectroradiometer

### Data example (LED down light)

Luminous intensity distribution

Color uniformity





### Other NIST instruments for LEDs





Goniophotometer for luminous intensity distribution



Reference spectroradiometer (double-monochromator) for LED color measurement



Variable temperature chamber (~10°C to 35°C)



#### **NIST Calibration Services for LED/SSL Products**

#### Photometric and radiometric quantities

- Total luminous flux (lm), luminous efficacy (lm/W)
- Total radiant flux (W) ... (350 830 nm)
- Luminous IntensityCIE Averaged LED Intensity A/B
- Luminous intensity distribution (small sources)

#### **Color quantities**

- Chromaticity coordinates (x,y), (u', v')
- Correlated color temperature
- Color Rendering Index (CRI  $R_a$ )
- Dominant wavelength  $\lambda_d$
- Spectral distribution (total spectral radiant flux)









- 1. SSL products commercialization support
- 2. Standardization for LED/SSL products
- 3. NIST facilities for LED/SSL measurements
- 4. Research on Color Quality of LED/SSL sources (update)



# Color Quality vs. Energy Efficiency





# **Problems of CRI (1)**

## Good scores do not guarantee good saturated colors



3-LED Model

Peaks at:

457, 540, & 605 nm

CRI Ra = 80



Ref.

**LED** 







This spectrum has higher Im/W.



# **Problems of CRI (2)**

### CRI penalizes light sources having enhanced color contrast.



Neodymium incandescent lamp

CRI *R*a = 77

(Normal incandescent lamp Ra =100)







# Problems of CRI (2)

#### RGB white light can have the same effects



3-LED Model Peaks at: 464, 538, 620 nm

CRI *R*a = 63





Products are optimized for metric.

Outdated metric impedes development of new technologies.



## Experimental RGB Source developed at NIST













### Viewed under real sources





Booth (300 lx)







Under the sun (5500 K, 88000 lx)



**SSL Energy Star minimum requirements** 

|                        | lm/W | CRI Ra |
|------------------------|------|--------|
| Under cabinet kitchen  | 24   | 75     |
| Portable desk/Task     | 29   | 75     |
| Recessed downlights    | 35   | 75     |
| Outdoor porch lights   | 24   |        |
| Outdoor step lights    | 20   |        |
| Outdoor pathway lights | 25   |        |
| Category B             | 70   | 75     |



## **Developing "Color Quality Scale"**

#### **Proposed by NIST**

- Fix the problems of CRI (based on color fidelity)
  - 1) use 15 saturated reference color samples



- 2) use the latest color space (CIE LAB)
- 3) use the latest chromatic adaptation formula (CMCCAT2000)
- 4) 0 to 100 scale (CRI can have negative score.)
- 5) CCT factor based on gamut area of ref. Illuminant
- 6) RMS combining of color differences
- Scale normalized for consistency with CRI for fluorescent lamps
- Address color quality Issue Saturation factor





## "Color Quality Scale"

#### **Proposed by NIST**

#### Saturation factor



Score is decreased for the full color difference



Score is not penalized for increase of chroma.

(Score is decreased for hue and lightness shifts)



## **Some Results of CQS**



Consistency of scores is maintained for fluorescent lamps



## **CIE TC 1-69**

CIE TC1-69 Colour Rendition by White Light Sources Established in May 2006

Chair: Wendy Davis (NIST)

#### TR:

To investigate new methods for assessing the colour rendition properties of white-light sources used for illumination, including solid-state light sources, with the goal of recommending new assessment procedures.

Vision experiments planned by several members.



# **Spectrally Tunable Lighting Facility**

### Under development at NIST







### **Specification goal**

- 48 channels of high- power LEDs, 400 650 nm.
- Spectrally tunable to simulate white LEDs and traditional light sources.
- Uniform illumination for the whole cubicle (500 lx).
- Contract awarded.
- First phase system (16 ch) to be delivered in May 2008.



# Thank you for your attention.

Contact: ohno@nist.gov

Ref. http://physics.nist.gov/OTD (Optical Sensor Group)

