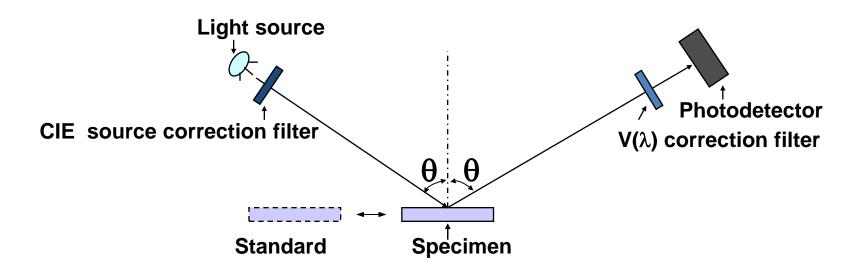
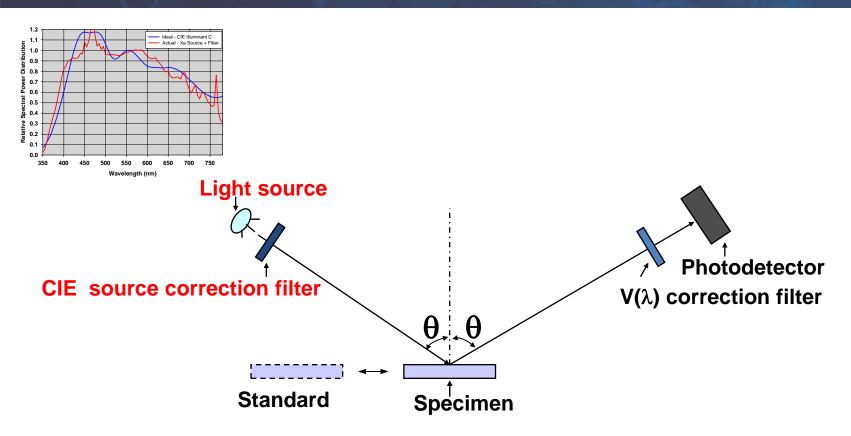

Investigation of Converging and Collimated Beam Instrument Geometry on Specular Gloss Measurements

<u>Joanne Zwinkels</u>*, Eric Cote* and John Morgan
* National Research Council Canada

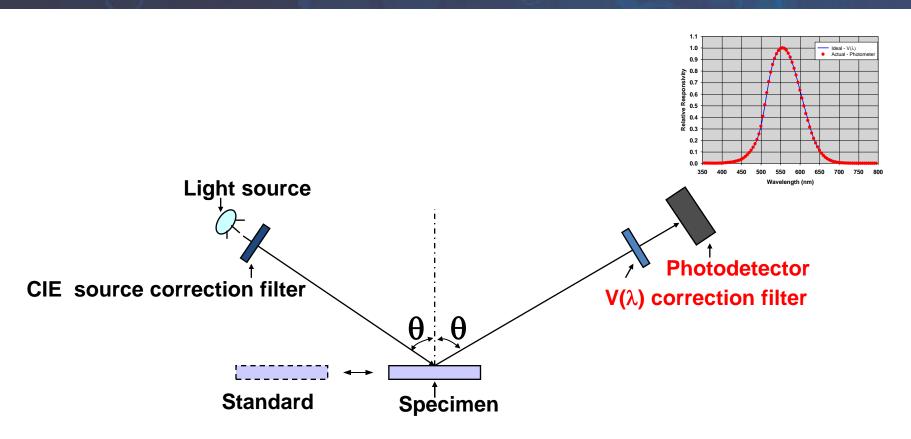
11th Biennial USNC&CNC/CIE technical day, NIST Gaithersburg, 3 Oct. 2017



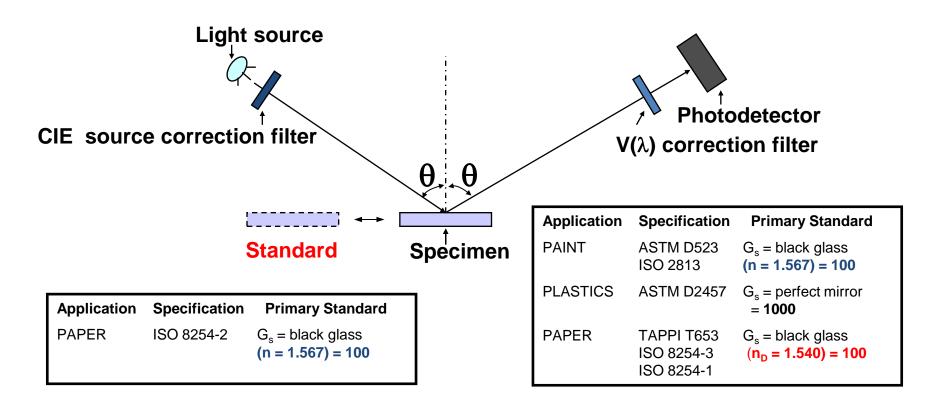
Outline


- Gloss Measurement
 - Principles
 - Standardization
- Current situation
 - Repeatability & Reproducibility
 - Q. What is impact of beam geometry: converging or collimated?
- NRC gloss study
 - NRC Reference Goniospectrophotometer (GSP)
 - Comparison samples
 - Results for different beam geometries
- Conclusions

Introduction

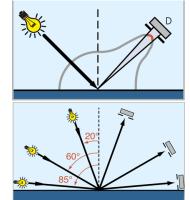

Specular gloss measurements are used by industry to describe the surface shininess or roughness of materials by detecting the mirror-like (specular) reflection.

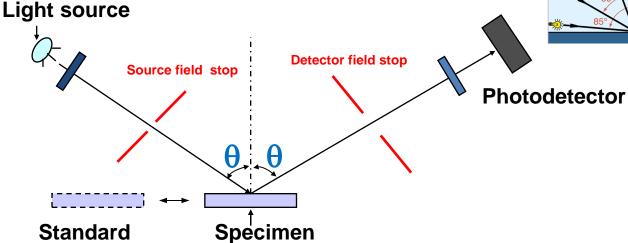
Standardization of Gloss Measurements: Source


Standardization of Gloss Measurements: Detector

Standardization of Gloss Measurements: Standard

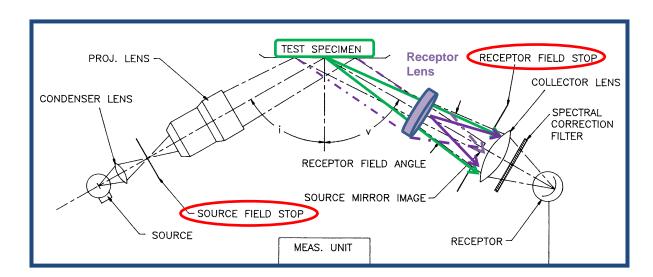
Depends on Application


NOTE: also depends on Specification



Measurement of Specular Gloss: Definition

Measured gloss depends on specular angle


NOTE: also depends on other geometric conditions

Gloss =
$$I_r$$
 = received light (through detector field stop) incident light (through source field stop)

Standardization of Gloss Measurements: Geometry

Converging beam

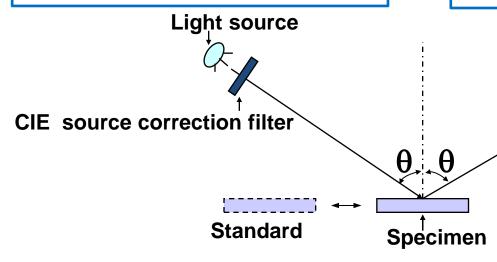
or Collimated (Parallel) beam

ASTM D523 specifications for source and receptor apertures cf. NRC Goniospectrophotometer							
Apertures	In Plane (°) Normal to Plane (°)						
	ASTM	NRC	ASTM.	NRC			
Source	0.75 ± 0.25	0.75 ± 0.01	3.0 ± 0.5	3.00 ± 0.01			
20° receptor	1.80 ± 0.05	1.81 ± 0.01	3.6 ± 0.1	3.62 ± 0.01			
60° receptor	4.40 ± 0.25	4.42 ± 0.01	11.7 ± 0.2	11.75 ± 0.01			
85° receptor	4.00 ± 0.25	4.02 ± 0.01	6.0 ± 0.3	6.02 ± 0.01			
Specular angle	20, 60, 85 ±1	20, 60, 85 ±0.05	\ /	,			

Depends on Specification

Depends on Beam Geometry

Standardization of Gloss Measurements: Summary


Spectral Conditions:

spectral nature of the illumination spectral responsivity of the detection system

Geometric Conditions:

Angle of incidence

Source and receptor aperture dimensions

Other Geometric Conditions:

 $V(\lambda)$ correction filter

Photodetector

Convergence angle:

converging or collimated beam

Impact not been studied

Gloss Scale:

Definition of primary gloss standard

Gloss – Standard Test Methods: 75° and 20° Geometries

75° Gloss: Paper and Board

- ISO 8254-1 Measurement of specular gloss Part 1: 75° gloss with a converging beam: TAPPI method
- ISO 8254-2 Measurement of specular gloss Part 2: 75° gloss with a parallel beam: DIN method
- TAPPI T480 Specular gloss of paper and paperboard at 75°

20° Gloss: Paper and Board

- ISO 8254-3 Measurement of specular gloss Part 3: 20° gloss with a converging beam: TAPPI method
- TAPPI T653 Specular gloss of paper and paperboard at 20°

20° Gloss: Paint and General Material

ISO 2813/ ASTM D523 Standard test method for specular gloss

Instrument geometry: converging beam; collimated beam Primary gloss standard refractive index: 1.540 (TAPPI); 1.567 (DIN)

Glossmeters: Repeatability & Reproducibility

Manufacturer specifications (20°/60°/85° geometry)

- Repeatability: ±0.1 to 0.2 GU
- Reproducibility: ±0.5 GU

c.f. Standards specifications (ASTM D523/ ISO 2813)

- Repeatability: ±0.8 to 1.7 GU
- Reproducibility: ±2.0 to 7.2 GU

c.f. In practice (6 commercial glossmeters; 25 samples)*:

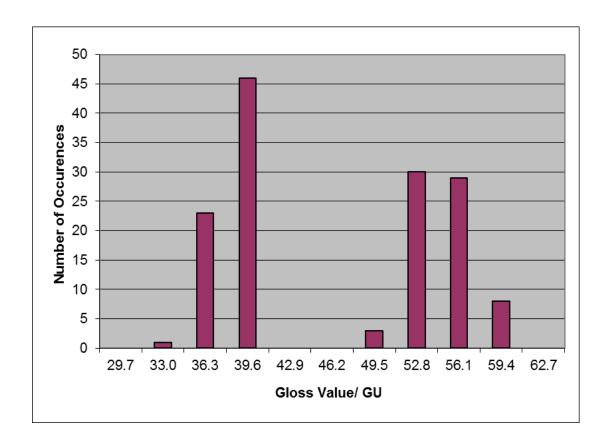
- Repeatability: ±0.4 to ± 17.1 GU
- Reproducibility: ±0.8 to 14.3 GU

^{*} F.B. Leloup et.al, Repeatability and reproducibility of specular gloss meters in theory and practice, J. Coat.Technol. Res., Vol. 13 (2016)

TAPPI 20° Gloss Round Robin (RR) Study (2016)

Background:

Optical Properties Committee of TAPPI's P&PQ Division requested CTS to conduct a RR study to answer:


➤ Q. Can the technical parameters of TAPPI Method T653: Specular gloss of paper and paperboard at 20° be loosened?

RR Protocol:

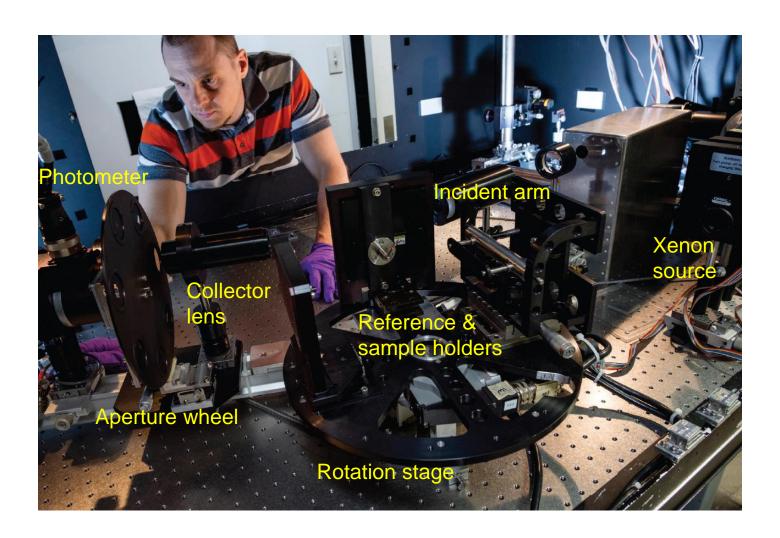
- > Test Sample: Medium gloss paper (RG01) of 30 specimens (sheets)
- Measure each sheet in upstream and downstream direction

No. of participants: 14 Labs

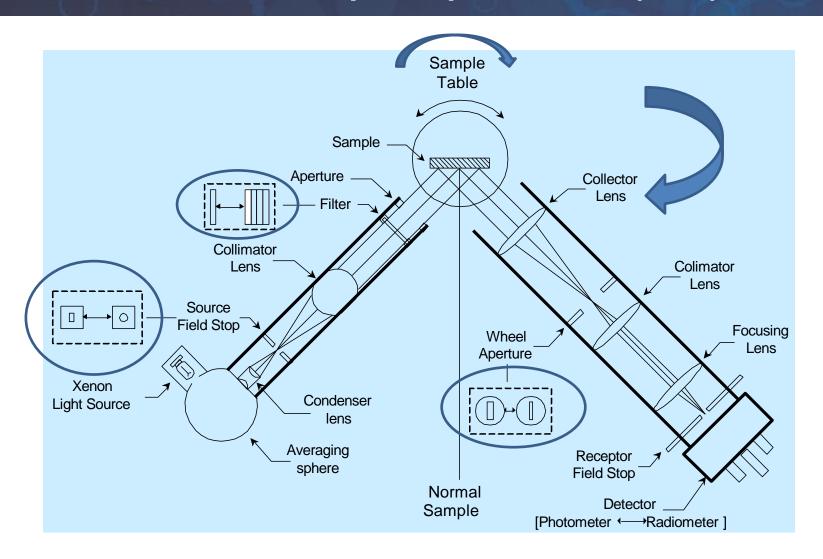
CTS Results for TAPPI 20° Gloss RR Study

Grand Mean: 44.9 GU

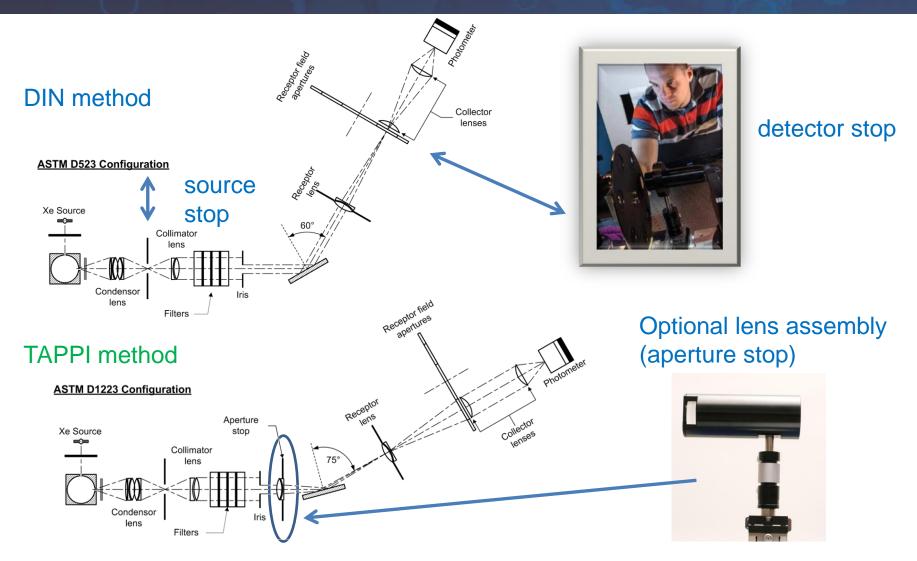
Standard deviation (SD): 8.7 GU


NRC Reference Goniospectrophotometer (GSP)

- Developed for multi-functional purposes:
 - Gloss at 20,60,85⁰ (ASTM D523 paints)
 - Gloss at 75⁰ (TAPPI T480 paper)
 - Gonioreflectance measurements (metallic and pearlescent colors)
- Versatile instrument design:
 - o rapid conversion between converging & collimated beam geometries
- Spectral and geometric properties of instrument:
 - measured and compared with standard requirements¹
- Uncertainties in gloss measurements have been estimated:2
 - Modelling deviation from standard requirements
 - Measurement intercomparisons (NRC Glossmeter and CTS)
 - Comparison with calculated values


¹ J. Liu, M. Noel and J. Zwinkels, *Appl. Opt.*, **44**, 4631-4638 (2005)

² M. Noel, J. Zwinkels and J. Liu, *Appl. Opt.*, **45**, 3712-3720 (2006)


NRC Reference Goniospectrophotometer (GSP)

NRC Reference Goniospectrophotometer (GSP)

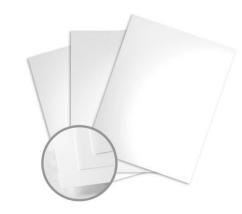
Re-configure GSP from collimated to converging beam

NRC Gloss Study: Impact of Beam Geometry

Paper Samples Tested (from CTS):

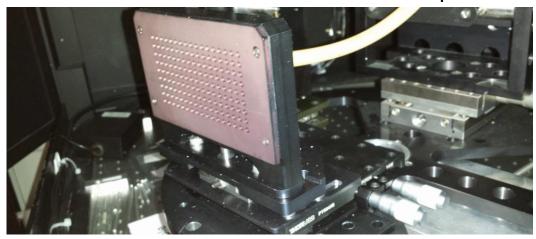
75° Geometry

<u>ID</u> <u>Type (# sheets)</u>


GU53 Medium gloss (10)

GT53 High gloss (10)

20° Geometry


<u>ID</u> <u>Type (# sheets)</u>

RG01 Medium gloss (30)

Paper Sample Mount

Vacuum suction plate

Pitch and yaw mounting stage

GSP Measurement Procedure and Validation (Ex.)

20° Gloss - TAPPI Method; Sample: RG01; Run #1

1	Meas 1	Meas 2	temp	Hum	#			Meas	STD	Error	temp	Hum	
1	36.065	35.795	27	21	681		NRC High	93.09	0.055	0.04	27	7	21
2	38.072	34.722	27	21	683		Vitrolite	86.86	0.075	0.07	27	7	21
3	36.859	35.961	27	21	685								
4	35.317	36.441	27	21	687								
5	36.444	37.588	27	21	689								
6	36.595	36.521	27	21	691								
7	36.302	36.075	27	21	693			NRC	Oual	ity Sv	ctam		
8	36.8	33.925	27	21	696			IVIC	Quai	ity Oy	Sterri		
9	34.842	34.532	27	21	698			Valid	ation	Stand	darde		
10	35.678	35.005	27	21	700			vanu	ation	Otano	Jarus	'	
11	37.13	36.431	27	21	702								
12	36.536	36.244	27	21	704								
13	36.071	35.504	27	20	706								
14	36.019	34.963	27	20	708			Meas	STD	Error	temp	Hum	
15	36.638	35.965	27	21	710		Vitrolite	86.92	0.007	0.13	27	7	21
16	36.88	35.19	27	21	714								
17	36.39	35.688	27	21	716								
18	35.869	36.379	27	21	718								
19	35.77	34.794	27	21	720								
20	34.723	34.38	27	20	722								
21	36.924	36.5	27	20	724								
22	36.249	36.563	27	20	726								
23	34.657	34.352	27	20	728								
24	35.989	35.797	27	20	730								
25	37.119	35.839	27	20	732								
26	36.32	36.287	27	20	734								
27	35.989	37.23	27	20	736								
28	36.226	35.789	27	20	738								
29	36.671	36.814	27	20	740			Meas	STD	Error	temp	Hum	
30	36.757	35.697	27	20	742	(Vitrolite	87.119	0.0136	0.329	27	7	20
							NRC High	93.36	0.0066	0.31	27	7	19

GSP Measurements and Validation Procedure

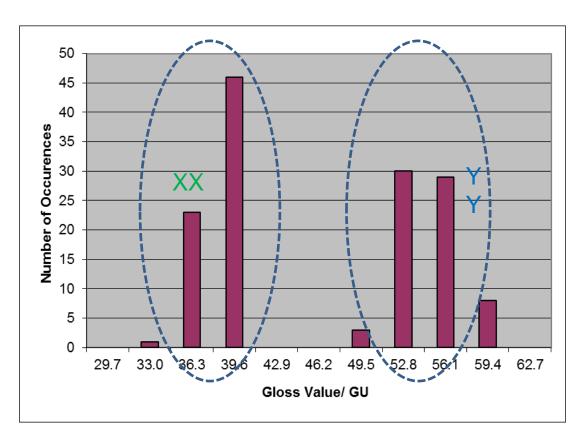
				DIN		TAPPI	
	NRC-Vitrolite	NRC-High-gloss	RG01 #1	RG01 #2	RG01 #1	RG01 #2	
Set #1 of Meas.	86.88	93.26	35.95	34.95	58.85	58.85	
Jet #1 of Meas.	00.00	33.20	36.40	34.65	59.15	59.15	
			36.45	34.10	59.50	57.45	
			35.85	32.80	59.25	59.05	
Mean	86.88	93.26	37.00	34.85	59.90	58.80	
Std.dev.	0.04	0.05	36.55	34.00	58.95	58.40	
			36.20	35.20	59.50	58.50	
Set #2 of Meas.	86.97	93.28	35.35	36.40	58.70	59.40	
			34.65	35.70	58.90	57.85	
			35.35	34.15	59.15	59.90	
			36.75	34.55	59.60	59.50	
Mean	86.97	93.28	36.35	34.30	59.90	59.30	
Std.dev.	0.05	0.06	35.80	35.15	58.70	58.75	
			35.50	35.20	57.95	59.10	
Set #3 of Meas.	86.90	93.24	36.30	35.20	58.55	60.55	
			36.05	31.95	58.45	58.85	
			36.05	36.70	58.55	59,20	
			36.15	34.90	58.55	57.65	
Mean	86.90	93.24	35.30	33.85	58.80	59.40	
Std.dev.	0.08	0.10	34.55	32.00	56.95	59.50	
	86.88	93.26	36.70	32.30	59.60 59.05	58.65 58.05	
	86.97	93.28	36.40 34.55	35.85 33.10	58.40	58.35	
	86.90	93.24	35.90	35.50	58.55	57.90	
Mean of means	86.92	93.26	36.45	35.80	59.25	60.65	
Std.dev.	0.05	0.02	36.30	34.20	59.40	59.65	
Jid.dev.	0.00	0.02	36.60	34.20 35.70	59.30	59.00	
			36.00	34.55	59.10	59.25	
			36.75	34.35	59.65	58.70	
			36.25	33.40	59.15	59.45	
Historical Value,	86.79	93.05	36.02	34.51	58.98	58.96	
Stdm	0.02	0.19	0.65	1.22	0.61	0.76	
1	113	60					
ree of Equivalence	0.15%	0.22%					

NRC 75° Gloss Results

Collimated Beam (DIN method)

Converging (TAPPI method)

ID	Run 1 (GU)	Run 2 (GU)
GU53	33.03	31.03
S.D.	±0.75	±0.73
GT53	66.43	65.30
S.D.	±2.00	±2.36
Quartz Standard	92.65	92.65


ID	Run 1 (GU)	Run 2 (GU)
GU53	37.94	38.73
S.D.	±0.82	±0.83
GT53	73.38	73.98
S.D.	±1.94	±1.91
Quartz Standard	94.22	94.22

Statistically significant differences:

GU53: 35.18 ± 3.74 GU (c.f. GSP reproducibility: ± 0.78 GU)

GT53: 69.77 ± 4.54 GU (c.f. GSP reproducibility: ± 2.05 GU)

NRC Results for TAPPI 20° Gloss RR Study

c.f. CTS RR Results for TAPPI Method:

Grand Mean: 44.9 GU ± 8.7 GU (14 labs)

NRC Mean: 47.1 GU ± 13.7 GU (both methods)

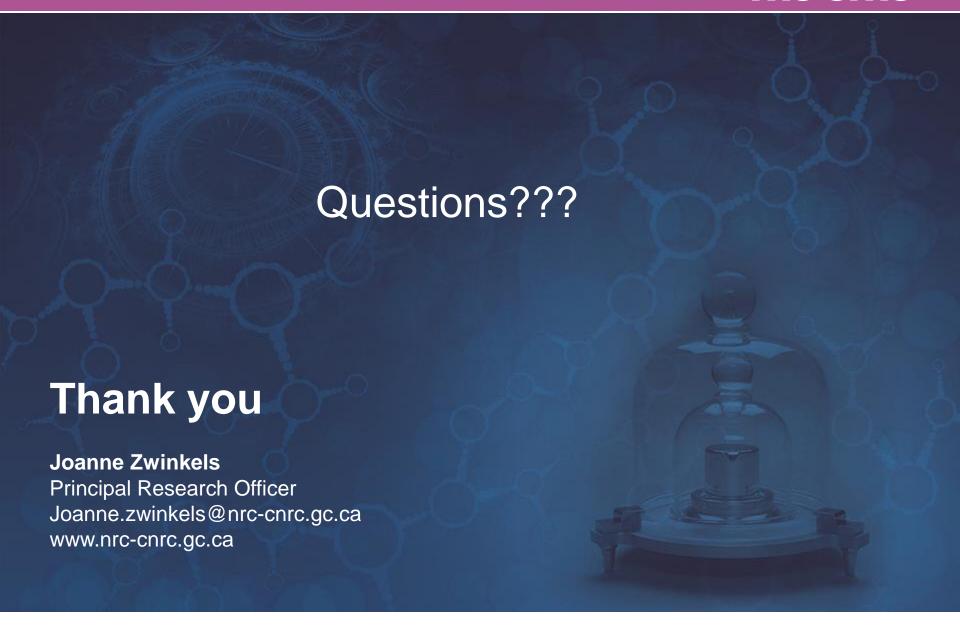
X = TAPPI method

Run 1: 36.02 £ 0.65 GU Run 2: 34.50 £ 1.22 GU

Y = DIN method

Run 1: 58.98 ± 0.61 GU Run 2: 58.96 ± 0.76 GU

 Δ Gloss (DIN-TAPPI) = 23.7 GU


GSP reproducibility: ± 0.6 to 1.2 GU

Conclusions of this NRC gloss study

- \circ For a given specular angle and given beam geometry, the reproducibility is $\pm 0.6 \pm 2.0$ GU
- For both 20° and 75° geometries, for a change in beam geometry, the reproducibility is ±3.7 – ±13.7 GU
- For 20° geometry, the gloss values increase in going from converging to collimated beam geometry
- For 75° geometry, the gloss values decrease in going from converging to collimated beam geometry
- Results indicate that gloss differences observed in recent comparisons may be due to glossmeters with incorrect beam geometry

For optimum measurement reproducibility: instrument needs to strictly conform to geometric, spectral and photometric conditions of the specified standard test method, within specified tolerances

- Including requirements for beam geometry!

